{"title":"右美托咪定通过抑制P2X7R/NF-κB/NLRP3通路减轻炎症和氧化应激,从而缓解大鼠急性应激诱发的急性肾损伤","authors":"Haotian Yang, Yuan Zhao, Yongping Chen, Tianyuan Yang, Xinyi Dou, Junfeng Li, Guiyan Yang, Guofeng Feng, Hao Fang, Honggang Fan, Shuai Zhang","doi":"10.1007/s10753-024-02065-8","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to investigate the potential protective effects of Dexmedetomidine (DEX) against acute kidney injury (AKI) induced by acute stress (AS). Wistar rats were divided into five groups: Control, DEX, AS, AS + DEX, and AS + A438079. The results showed that AS led to AKI by increasing inflammatory biomarkers and oxidative stress-related indicators. The acute stress model in rats was successfully established. Renal function, histopathology, oxidative stress, and inflammation were assessed. Localization of P2X7 receptor (P2X7R) was determined by immunofluorescence. Additionally, the key inflammatory proteins of the P2X7R/NF-κB/NLRP3 signaling pathway were measured by Western blotting. DEX significantly improved kidney function, alleviated kidney injury, and reduced oxidative stress and inflammation. DEX inhibited the activation of the P2X7R, decreased the expression of NF-κB, NLRP3 inflammasome, and Caspase-1, and inhibited the expression of interleukin-1β (IL-1β) and tumor necrosis factor α (TNFα). Furthermore, DEX also alleviated AS-induced AKI by inhibiting the excessive production of reactive oxygen species (ROS) and reducing oxidative stress. In conclusion, DEX attenuates AS-induced AKI by mitigating inflammation and oxidative stress through the inhibition of the P2X7R/NF-κB/NLRP3 pathway in rats.</p>","PeriodicalId":13524,"journal":{"name":"Inflammation","volume":" ","pages":"412-425"},"PeriodicalIF":4.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dexmedetomidine Alleviates Acute Stress-Induced Acute Kidney Injury by Attenuating Inflammation and Oxidative Stress via Inhibiting the P2X<sub>7</sub>R/NF-κB/NLRP3 Pathway in Rats.\",\"authors\":\"Haotian Yang, Yuan Zhao, Yongping Chen, Tianyuan Yang, Xinyi Dou, Junfeng Li, Guiyan Yang, Guofeng Feng, Hao Fang, Honggang Fan, Shuai Zhang\",\"doi\":\"10.1007/s10753-024-02065-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study aimed to investigate the potential protective effects of Dexmedetomidine (DEX) against acute kidney injury (AKI) induced by acute stress (AS). Wistar rats were divided into five groups: Control, DEX, AS, AS + DEX, and AS + A438079. The results showed that AS led to AKI by increasing inflammatory biomarkers and oxidative stress-related indicators. The acute stress model in rats was successfully established. Renal function, histopathology, oxidative stress, and inflammation were assessed. Localization of P2X7 receptor (P2X7R) was determined by immunofluorescence. Additionally, the key inflammatory proteins of the P2X7R/NF-κB/NLRP3 signaling pathway were measured by Western blotting. DEX significantly improved kidney function, alleviated kidney injury, and reduced oxidative stress and inflammation. DEX inhibited the activation of the P2X7R, decreased the expression of NF-κB, NLRP3 inflammasome, and Caspase-1, and inhibited the expression of interleukin-1β (IL-1β) and tumor necrosis factor α (TNFα). Furthermore, DEX also alleviated AS-induced AKI by inhibiting the excessive production of reactive oxygen species (ROS) and reducing oxidative stress. In conclusion, DEX attenuates AS-induced AKI by mitigating inflammation and oxidative stress through the inhibition of the P2X7R/NF-κB/NLRP3 pathway in rats.</p>\",\"PeriodicalId\":13524,\"journal\":{\"name\":\"Inflammation\",\"volume\":\" \",\"pages\":\"412-425\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inflammation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10753-024-02065-8\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inflammation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10753-024-02065-8","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/19 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Dexmedetomidine Alleviates Acute Stress-Induced Acute Kidney Injury by Attenuating Inflammation and Oxidative Stress via Inhibiting the P2X7R/NF-κB/NLRP3 Pathway in Rats.
This study aimed to investigate the potential protective effects of Dexmedetomidine (DEX) against acute kidney injury (AKI) induced by acute stress (AS). Wistar rats were divided into five groups: Control, DEX, AS, AS + DEX, and AS + A438079. The results showed that AS led to AKI by increasing inflammatory biomarkers and oxidative stress-related indicators. The acute stress model in rats was successfully established. Renal function, histopathology, oxidative stress, and inflammation were assessed. Localization of P2X7 receptor (P2X7R) was determined by immunofluorescence. Additionally, the key inflammatory proteins of the P2X7R/NF-κB/NLRP3 signaling pathway were measured by Western blotting. DEX significantly improved kidney function, alleviated kidney injury, and reduced oxidative stress and inflammation. DEX inhibited the activation of the P2X7R, decreased the expression of NF-κB, NLRP3 inflammasome, and Caspase-1, and inhibited the expression of interleukin-1β (IL-1β) and tumor necrosis factor α (TNFα). Furthermore, DEX also alleviated AS-induced AKI by inhibiting the excessive production of reactive oxygen species (ROS) and reducing oxidative stress. In conclusion, DEX attenuates AS-induced AKI by mitigating inflammation and oxidative stress through the inhibition of the P2X7R/NF-κB/NLRP3 pathway in rats.
期刊介绍:
Inflammation publishes the latest international advances in experimental and clinical research on the physiology, biochemistry, cell biology, and pharmacology of inflammation. Contributions include full-length scientific reports, short definitive articles, and papers from meetings and symposia proceedings. The journal''s coverage includes acute and chronic inflammation; mediators of inflammation; mechanisms of tissue injury and cytotoxicity; pharmacology of inflammation; and clinical studies of inflammation and its modification.