Ji Yoon Kim, Jiyoon Lee, Sin Gon Kim, Nam Hoon Kim
{"title":"近期血糖是 2 型糖尿病患者 β 细胞功能的主要决定因素。","authors":"Ji Yoon Kim, Jiyoon Lee, Sin Gon Kim, Nam Hoon Kim","doi":"10.4093/dmj.2023.0359","DOIUrl":null,"url":null,"abstract":"<p><strong>Backgruound: </strong>Progressive deterioration of β-cell function is a characteristic of type 2 diabetes mellitus (T2DM). We aimed to investigate the relative contributions of clinical factors to β-cell function in T2DM.</p><p><strong>Methods: </strong>In a T2DM cohort of 470 adults (disease duration 0 to 41 years), β-cell function was estimated using insulinogenic index (IGI), disposition index (DI), oral disposition index (DIO), and homeostasis model assessment of β-cell function (HOMA-B) derived from a 75 g oral glucose tolerance test (OGTT). The relative contributions of age, sex, disease duration, body mass index, glycosylated hemoglobin (HbA1c) levels (at the time of the OGTT), area under the curve of HbA1c over time (HbA1c AUC), coefficient of variation in HbA1c (HbA1c CV), and antidiabetic agents use were compared by standardized regression coefficients. Longitudinal analyses of these indices were also performed.</p><p><strong>Results: </strong>IGI, DI, DIO, and HOMA-B declined over time (P<0.001 for all). Notably, HbA1c was the most significant factor affecting IGI, DI, DIO, and HOMA-B in the multivariable regression analysis. Compared with HbA1c ≥9%, DI was 1.9-, 2.5-, 3.7-, and 5.5-fold higher in HbA1c of 8%-<9%, 7%-<8%, 6%-<7%, and <6%, respectively, after adjusting for confounding factors (P<0.001). Conversely, β-cell function was not affected by the type or duration of antidiabetic agents, HbA1c AUC, or HbA1c CV. The trajectories of the IGI, DI, DIO, and HOMA-B mirrored those of HbA1c.</p><p><strong>Conclusion: </strong>β-Cell function declines over time; however, it is flexible, being largely affected by recent glycemia in T2DM.</p>","PeriodicalId":11153,"journal":{"name":"Diabetes & Metabolism Journal","volume":" ","pages":"1135-1146"},"PeriodicalIF":6.8000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11621653/pdf/","citationCount":"0","resultStr":"{\"title\":\"Recent Glycemia Is a Major Determinant of β-Cell Function in Type 2 Diabetes Mellitus.\",\"authors\":\"Ji Yoon Kim, Jiyoon Lee, Sin Gon Kim, Nam Hoon Kim\",\"doi\":\"10.4093/dmj.2023.0359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Backgruound: </strong>Progressive deterioration of β-cell function is a characteristic of type 2 diabetes mellitus (T2DM). We aimed to investigate the relative contributions of clinical factors to β-cell function in T2DM.</p><p><strong>Methods: </strong>In a T2DM cohort of 470 adults (disease duration 0 to 41 years), β-cell function was estimated using insulinogenic index (IGI), disposition index (DI), oral disposition index (DIO), and homeostasis model assessment of β-cell function (HOMA-B) derived from a 75 g oral glucose tolerance test (OGTT). The relative contributions of age, sex, disease duration, body mass index, glycosylated hemoglobin (HbA1c) levels (at the time of the OGTT), area under the curve of HbA1c over time (HbA1c AUC), coefficient of variation in HbA1c (HbA1c CV), and antidiabetic agents use were compared by standardized regression coefficients. Longitudinal analyses of these indices were also performed.</p><p><strong>Results: </strong>IGI, DI, DIO, and HOMA-B declined over time (P<0.001 for all). Notably, HbA1c was the most significant factor affecting IGI, DI, DIO, and HOMA-B in the multivariable regression analysis. Compared with HbA1c ≥9%, DI was 1.9-, 2.5-, 3.7-, and 5.5-fold higher in HbA1c of 8%-<9%, 7%-<8%, 6%-<7%, and <6%, respectively, after adjusting for confounding factors (P<0.001). Conversely, β-cell function was not affected by the type or duration of antidiabetic agents, HbA1c AUC, or HbA1c CV. The trajectories of the IGI, DI, DIO, and HOMA-B mirrored those of HbA1c.</p><p><strong>Conclusion: </strong>β-Cell function declines over time; however, it is flexible, being largely affected by recent glycemia in T2DM.</p>\",\"PeriodicalId\":11153,\"journal\":{\"name\":\"Diabetes & Metabolism Journal\",\"volume\":\" \",\"pages\":\"1135-1146\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11621653/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diabetes & Metabolism Journal\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4093/dmj.2023.0359\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetes & Metabolism Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4093/dmj.2023.0359","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Recent Glycemia Is a Major Determinant of β-Cell Function in Type 2 Diabetes Mellitus.
Backgruound: Progressive deterioration of β-cell function is a characteristic of type 2 diabetes mellitus (T2DM). We aimed to investigate the relative contributions of clinical factors to β-cell function in T2DM.
Methods: In a T2DM cohort of 470 adults (disease duration 0 to 41 years), β-cell function was estimated using insulinogenic index (IGI), disposition index (DI), oral disposition index (DIO), and homeostasis model assessment of β-cell function (HOMA-B) derived from a 75 g oral glucose tolerance test (OGTT). The relative contributions of age, sex, disease duration, body mass index, glycosylated hemoglobin (HbA1c) levels (at the time of the OGTT), area under the curve of HbA1c over time (HbA1c AUC), coefficient of variation in HbA1c (HbA1c CV), and antidiabetic agents use were compared by standardized regression coefficients. Longitudinal analyses of these indices were also performed.
Results: IGI, DI, DIO, and HOMA-B declined over time (P<0.001 for all). Notably, HbA1c was the most significant factor affecting IGI, DI, DIO, and HOMA-B in the multivariable regression analysis. Compared with HbA1c ≥9%, DI was 1.9-, 2.5-, 3.7-, and 5.5-fold higher in HbA1c of 8%-<9%, 7%-<8%, 6%-<7%, and <6%, respectively, after adjusting for confounding factors (P<0.001). Conversely, β-cell function was not affected by the type or duration of antidiabetic agents, HbA1c AUC, or HbA1c CV. The trajectories of the IGI, DI, DIO, and HOMA-B mirrored those of HbA1c.
Conclusion: β-Cell function declines over time; however, it is flexible, being largely affected by recent glycemia in T2DM.
期刊介绍:
The aims of the Diabetes & Metabolism Journal are to contribute to the cure of and education about diabetes mellitus, and the advancement of diabetology through the sharing of scientific information on the latest developments in diabetology among members of the Korean Diabetes Association and other international societies.
The Journal publishes articles on basic and clinical studies, focusing on areas such as metabolism, epidemiology, pathogenesis, complications, and treatments relevant to diabetes mellitus. It also publishes articles covering obesity and cardiovascular disease. Articles on translational research and timely issues including ubiquitous care or new technology in the management of diabetes and metabolic disorders are welcome. In addition, genome research, meta-analysis, and randomized controlled studies are welcome for publication.
The editorial board invites articles from international research or clinical study groups. Publication is determined by the editors and peer reviewers, who are experts in their specific fields of diabetology.