AVA:自动化和人工智能驱动的智能视觉分析框架

IF 3.8 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Jiazhe Wang , Xi Li , Chenlu Li , Di Peng , Arran Zeyu Wang , Yuhui Gu , Xingui Lai , Haifeng Zhang , Xinyue Xu , Xiaoqing Dong , Zhifeng Lin , Jiehui Zhou , Xingyu Liu , Wei Chen
{"title":"AVA:自动化和人工智能驱动的智能视觉分析框架","authors":"Jiazhe Wang ,&nbsp;Xi Li ,&nbsp;Chenlu Li ,&nbsp;Di Peng ,&nbsp;Arran Zeyu Wang ,&nbsp;Yuhui Gu ,&nbsp;Xingui Lai ,&nbsp;Haifeng Zhang ,&nbsp;Xinyue Xu ,&nbsp;Xiaoqing Dong ,&nbsp;Zhifeng Lin ,&nbsp;Jiehui Zhou ,&nbsp;Xingyu Liu ,&nbsp;Wei Chen","doi":"10.1016/j.visinf.2024.06.002","DOIUrl":null,"url":null,"abstract":"<div><p>With the incredible growth of the scale and complexity of datasets, creating proper visualizations for users becomes more and more challenging in large datasets. Though several visualization recommendation systems have been proposed, so far, the lack of practical engineering inputs is still a major concern regarding the usage of visualization recommendations in the industry. In this paper, we proposed <em>AVA</em>, an open-sourced web-based framework for <strong>A</strong>utomated <strong>V</strong>isual <strong>A</strong>nalytics. AVA contains both empiric-driven and insight-driven visualization recommendation methods to meet the demands of creating aesthetic visualizations and understanding expressible insights respectively. The code is available at <span>https://github.com/antvis/AVA</span><svg><path></path></svg>.</p></div>","PeriodicalId":36903,"journal":{"name":"Visual Informatics","volume":"8 2","pages":"Pages 106-114"},"PeriodicalIF":3.8000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468502X24000226/pdfft?md5=d535cfeb7d4bca4f8b918b02581ff6a3&pid=1-s2.0-S2468502X24000226-main.pdf","citationCount":"0","resultStr":"{\"title\":\"AVA: An automated and AI-driven intelligent visual analytics framework\",\"authors\":\"Jiazhe Wang ,&nbsp;Xi Li ,&nbsp;Chenlu Li ,&nbsp;Di Peng ,&nbsp;Arran Zeyu Wang ,&nbsp;Yuhui Gu ,&nbsp;Xingui Lai ,&nbsp;Haifeng Zhang ,&nbsp;Xinyue Xu ,&nbsp;Xiaoqing Dong ,&nbsp;Zhifeng Lin ,&nbsp;Jiehui Zhou ,&nbsp;Xingyu Liu ,&nbsp;Wei Chen\",\"doi\":\"10.1016/j.visinf.2024.06.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>With the incredible growth of the scale and complexity of datasets, creating proper visualizations for users becomes more and more challenging in large datasets. Though several visualization recommendation systems have been proposed, so far, the lack of practical engineering inputs is still a major concern regarding the usage of visualization recommendations in the industry. In this paper, we proposed <em>AVA</em>, an open-sourced web-based framework for <strong>A</strong>utomated <strong>V</strong>isual <strong>A</strong>nalytics. AVA contains both empiric-driven and insight-driven visualization recommendation methods to meet the demands of creating aesthetic visualizations and understanding expressible insights respectively. The code is available at <span>https://github.com/antvis/AVA</span><svg><path></path></svg>.</p></div>\",\"PeriodicalId\":36903,\"journal\":{\"name\":\"Visual Informatics\",\"volume\":\"8 2\",\"pages\":\"Pages 106-114\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2468502X24000226/pdfft?md5=d535cfeb7d4bca4f8b918b02581ff6a3&pid=1-s2.0-S2468502X24000226-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Visual Informatics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468502X24000226\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visual Informatics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468502X24000226","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

随着数据集规模和复杂性的惊人增长,在大型数据集中为用户创建适当的可视化变得越来越具有挑战性。尽管迄今为止已经有多个可视化推荐系统被提出,但缺乏实际工程投入仍然是业界使用可视化推荐的一个主要问题。在本文中,我们提出了一个开源的基于网络的自动可视化分析框架--AVA。AVA 包含经验驱动和洞察驱动两种可视化推荐方法,分别满足创建美观的可视化和理解可表达的洞察的需求。代码可在 https://github.com/antvis/AVA 上获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AVA: An automated and AI-driven intelligent visual analytics framework

With the incredible growth of the scale and complexity of datasets, creating proper visualizations for users becomes more and more challenging in large datasets. Though several visualization recommendation systems have been proposed, so far, the lack of practical engineering inputs is still a major concern regarding the usage of visualization recommendations in the industry. In this paper, we proposed AVA, an open-sourced web-based framework for Automated Visual Analytics. AVA contains both empiric-driven and insight-driven visualization recommendation methods to meet the demands of creating aesthetic visualizations and understanding expressible insights respectively. The code is available at https://github.com/antvis/AVA.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Visual Informatics
Visual Informatics Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
6.70
自引率
3.30%
发文量
33
审稿时长
79 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信