通过中尺度对流系统抽水实现水分循环

IF 3.1 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES
Huancui Hu, L. R. Leung, Zhe Feng, James Marquis
{"title":"通过中尺度对流系统抽水实现水分循环","authors":"Huancui Hu, L. R. Leung, Zhe Feng, James Marquis","doi":"10.1175/jhm-d-23-0174.1","DOIUrl":null,"url":null,"abstract":"\nMoisture recycling, the contribution of local evapotranspiration (ET) to precipitation, has been studied using bulk models assuming a well-mixed atmosphere. The latter is inconsistent with a climatologically stratified atmosphere that slants across latitudes. Reconciling the two views requires an understanding of overturning associated with different weather systems. In this study, we aim to better understand moisture recycling associated with mesoscale convective systems (MCSs). Using a convection-permitting WRF simulation equipped with water vapor tracers (WRF-WVT), we tag moisture from terrestrial ET in the U.S. Southern Great Plains during May 2015, when more than 20 MCS events occurred and produced significant precipitation and flooding. Water budget analysis reveals that approximately 76% of terrestrial ET is advected away from the region while the remaining 24% of terrestrial ET is “pumped” upward within the region, accounting for 12% of precipitation. Moisture recycling peaks during early night hours (1800–2400 LT) due to the mixing of the daytime accumulated ET by active convection. By focusing on five “diurnally driven” MCSs with less large-scale circulation influence than other MCSs during the same period, we find an upright pumping of terrestrial ET at the MCS initiation and development stages, which diverges into two branches during the MCS mature and decaying stages. One branch in the upper level advects the ET-sourced moisture downstream, while the other branch in the mid-to-upper level contributes to the trailing precipitation upstream. Overall, our analysis depicts a pumping mechanism associated with MCSs that mixes local ET vertically, highlighting its specific contributions to enhancing convective precipitation processes.","PeriodicalId":15962,"journal":{"name":"Journal of Hydrometeorology","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Moisture Recycling through Pumping by Mesoscale Convective Systems\",\"authors\":\"Huancui Hu, L. R. Leung, Zhe Feng, James Marquis\",\"doi\":\"10.1175/jhm-d-23-0174.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nMoisture recycling, the contribution of local evapotranspiration (ET) to precipitation, has been studied using bulk models assuming a well-mixed atmosphere. The latter is inconsistent with a climatologically stratified atmosphere that slants across latitudes. Reconciling the two views requires an understanding of overturning associated with different weather systems. In this study, we aim to better understand moisture recycling associated with mesoscale convective systems (MCSs). Using a convection-permitting WRF simulation equipped with water vapor tracers (WRF-WVT), we tag moisture from terrestrial ET in the U.S. Southern Great Plains during May 2015, when more than 20 MCS events occurred and produced significant precipitation and flooding. Water budget analysis reveals that approximately 76% of terrestrial ET is advected away from the region while the remaining 24% of terrestrial ET is “pumped” upward within the region, accounting for 12% of precipitation. Moisture recycling peaks during early night hours (1800–2400 LT) due to the mixing of the daytime accumulated ET by active convection. By focusing on five “diurnally driven” MCSs with less large-scale circulation influence than other MCSs during the same period, we find an upright pumping of terrestrial ET at the MCS initiation and development stages, which diverges into two branches during the MCS mature and decaying stages. One branch in the upper level advects the ET-sourced moisture downstream, while the other branch in the mid-to-upper level contributes to the trailing precipitation upstream. Overall, our analysis depicts a pumping mechanism associated with MCSs that mixes local ET vertically, highlighting its specific contributions to enhancing convective precipitation processes.\",\"PeriodicalId\":15962,\"journal\":{\"name\":\"Journal of Hydrometeorology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydrometeorology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1175/jhm-d-23-0174.1\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrometeorology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/jhm-d-23-0174.1","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

水汽循环,即当地蒸散(ET)对降水的贡献,已通过假设混合良好的大气层的大块模型进行了研究。后者与跨纬度倾斜的气候分层大气不一致。要协调这两种观点,需要了解与不同天气系统相关的翻转。在这项研究中,我们旨在更好地理解与中尺度对流系统(MCSs)相关的水汽循环。利用配备水汽示踪剂的对流允许 WRF 模拟(WRF-WVT),我们标记了 2015 年 5 月期间美国南部大平原陆地蒸散发的水汽,当时发生了 20 多起 MCS 事件,产生了大量降水和洪水。水分预算分析表明,约 76% 的陆地蒸散发被平流到该地区以外的地方,而其余 24% 的陆地蒸散发则被 "抽 "到该地区以外的地方,占降水量的 12%。由于活跃对流将白天累积的蒸散发混合在一起,水汽循环在早晚时段(18:00-24:00 LT)达到顶峰。通过重点研究同期大尺度环流影响较小的五个 "昼夜驱动型 "多变量气候系统,我们发现在多变量气候系统的起始和发展阶段,陆地蒸散发有直立抽吸作用,而在多变量气候系统的成熟和衰减阶段,这种作用会分化成两个分支。一个位于高层的分支将源于蒸散发的水汽向下游平流,而另一个位于中高层的分支则将源于蒸散发的降水向上游拖曳。总之,我们的分析描绘了与多云天气相关的抽水机制,它垂直混合了当地的蒸散发,突出了它对增强对流降水过程的特殊贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Moisture Recycling through Pumping by Mesoscale Convective Systems
Moisture recycling, the contribution of local evapotranspiration (ET) to precipitation, has been studied using bulk models assuming a well-mixed atmosphere. The latter is inconsistent with a climatologically stratified atmosphere that slants across latitudes. Reconciling the two views requires an understanding of overturning associated with different weather systems. In this study, we aim to better understand moisture recycling associated with mesoscale convective systems (MCSs). Using a convection-permitting WRF simulation equipped with water vapor tracers (WRF-WVT), we tag moisture from terrestrial ET in the U.S. Southern Great Plains during May 2015, when more than 20 MCS events occurred and produced significant precipitation and flooding. Water budget analysis reveals that approximately 76% of terrestrial ET is advected away from the region while the remaining 24% of terrestrial ET is “pumped” upward within the region, accounting for 12% of precipitation. Moisture recycling peaks during early night hours (1800–2400 LT) due to the mixing of the daytime accumulated ET by active convection. By focusing on five “diurnally driven” MCSs with less large-scale circulation influence than other MCSs during the same period, we find an upright pumping of terrestrial ET at the MCS initiation and development stages, which diverges into two branches during the MCS mature and decaying stages. One branch in the upper level advects the ET-sourced moisture downstream, while the other branch in the mid-to-upper level contributes to the trailing precipitation upstream. Overall, our analysis depicts a pumping mechanism associated with MCSs that mixes local ET vertically, highlighting its specific contributions to enhancing convective precipitation processes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Hydrometeorology
Journal of Hydrometeorology 地学-气象与大气科学
CiteScore
7.40
自引率
5.30%
发文量
116
审稿时长
4-8 weeks
期刊介绍: The Journal of Hydrometeorology (JHM) (ISSN: 1525-755X; eISSN: 1525-7541) publishes research on modeling, observing, and forecasting processes related to fluxes and storage of water and energy, including interactions with the boundary layer and lower atmosphere, and processes related to precipitation, radiation, and other meteorological inputs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信