Y. Wang, K. Wang, L. Liu, Y. Wu, F. Wang, J. G. Wang
{"title":"H+-H(2l) 碰撞中电子俘获、激发和电离过程的理论研究","authors":"Y. Wang, K. Wang, L. Liu, Y. Wu, F. Wang, J. G. Wang","doi":"10.3847/1538-4365/ad3633","DOIUrl":null,"url":null,"abstract":"The processes of single-electron charge exchange, excitation, and ionization during proton impact on H(2l) are investigated. We employ two different theoretical methods that are suitable for different collision energy regions: the full quantum-mechanical molecular orbital close-coupling method for energies from 0.001 to 1 keV u−1 and the two-center atomic orbital close-coupling (TC-AOCC) method for energies between 0.3 and 100 keV u−1. For charge exchange and excitation processes, the total and nl-resolved cross sections to the final reaction channels of H (nl, n = 1–4) have been obtained over a broad energy region. Moreover, the ionization cross sections in the TC-AOCC calculation are also reported for both H(2s) and H(2p) initial target states. The present results are all compared with those from other sources when available. It is found that the magnitude and energy behavior of nl-resolved excitation cross sections for H+–H(2p) collisions are significantly distinct from those of the H(2s) initial state in the entire energy range considered, particularly in the low-energy region. The energy behaviors of the nl-resolved charge exchange cross sections from the H(2p) initial state are similar to those from the H(2s) initial state, but their magnitudes are larger. The present accurate cross-section data are anticipated to provide insight into the research of astrophysics and controlled fusion plasmas.","PeriodicalId":22368,"journal":{"name":"The Astrophysical Journal Supplement Series","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theoretical Study of Electron Capture, Excitation, and Ionization Processes in H+−H(2l) Collisions\",\"authors\":\"Y. Wang, K. Wang, L. Liu, Y. Wu, F. Wang, J. G. Wang\",\"doi\":\"10.3847/1538-4365/ad3633\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The processes of single-electron charge exchange, excitation, and ionization during proton impact on H(2l) are investigated. We employ two different theoretical methods that are suitable for different collision energy regions: the full quantum-mechanical molecular orbital close-coupling method for energies from 0.001 to 1 keV u−1 and the two-center atomic orbital close-coupling (TC-AOCC) method for energies between 0.3 and 100 keV u−1. For charge exchange and excitation processes, the total and nl-resolved cross sections to the final reaction channels of H (nl, n = 1–4) have been obtained over a broad energy region. Moreover, the ionization cross sections in the TC-AOCC calculation are also reported for both H(2s) and H(2p) initial target states. The present results are all compared with those from other sources when available. It is found that the magnitude and energy behavior of nl-resolved excitation cross sections for H+–H(2p) collisions are significantly distinct from those of the H(2s) initial state in the entire energy range considered, particularly in the low-energy region. The energy behaviors of the nl-resolved charge exchange cross sections from the H(2p) initial state are similar to those from the H(2s) initial state, but their magnitudes are larger. The present accurate cross-section data are anticipated to provide insight into the research of astrophysics and controlled fusion plasmas.\",\"PeriodicalId\":22368,\"journal\":{\"name\":\"The Astrophysical Journal Supplement Series\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Astrophysical Journal Supplement Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3847/1538-4365/ad3633\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal Supplement Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4365/ad3633","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Theoretical Study of Electron Capture, Excitation, and Ionization Processes in H+−H(2l) Collisions
The processes of single-electron charge exchange, excitation, and ionization during proton impact on H(2l) are investigated. We employ two different theoretical methods that are suitable for different collision energy regions: the full quantum-mechanical molecular orbital close-coupling method for energies from 0.001 to 1 keV u−1 and the two-center atomic orbital close-coupling (TC-AOCC) method for energies between 0.3 and 100 keV u−1. For charge exchange and excitation processes, the total and nl-resolved cross sections to the final reaction channels of H (nl, n = 1–4) have been obtained over a broad energy region. Moreover, the ionization cross sections in the TC-AOCC calculation are also reported for both H(2s) and H(2p) initial target states. The present results are all compared with those from other sources when available. It is found that the magnitude and energy behavior of nl-resolved excitation cross sections for H+–H(2p) collisions are significantly distinct from those of the H(2s) initial state in the entire energy range considered, particularly in the low-energy region. The energy behaviors of the nl-resolved charge exchange cross sections from the H(2p) initial state are similar to those from the H(2s) initial state, but their magnitudes are larger. The present accurate cross-section data are anticipated to provide insight into the research of astrophysics and controlled fusion plasmas.