利用控制变量法改进压缩矩阵乘法

IF 0.7 4区 计算机科学 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
Bhisham Dev Verma , Punit Pankaj Dubey , Rameshwar Pratap , Manoj Thakur
{"title":"利用控制变量法改进压缩矩阵乘法","authors":"Bhisham Dev Verma ,&nbsp;Punit Pankaj Dubey ,&nbsp;Rameshwar Pratap ,&nbsp;Manoj Thakur","doi":"10.1016/j.ipl.2024.106517","DOIUrl":null,"url":null,"abstract":"<div><p>The seminal work by Pagh <span>[1]</span> proposed a matrix multiplication algorithm for real-valued squared matrices called Compressed Matrix Multiplication (CMM) having a sparse matrix output product. The algorithm is based on a popular sketching technique called Count-Sketch <span>[2]</span> and Fast Fourier Transform (FFT). For input square matrices <strong>A</strong> and <strong>B</strong> of order <em>n</em> and the product matrix <strong>AB</strong> with Frobenius norm <span><math><mo>|</mo><mo>|</mo><mrow><mi>AB</mi></mrow><mo>|</mo><msub><mrow><mo>|</mo></mrow><mrow><mi>F</mi></mrow></msub></math></span>, the algorithm offers an unbiased estimate for each entry, <em>i.e.</em>, <span><math><msub><mrow><mo>(</mo><mrow><mi>AB</mi></mrow><mo>)</mo></mrow><mrow><mi>i</mi><mo>,</mo><mi>j</mi></mrow></msub></math></span> of the product matrix <strong>AB</strong> with a variance bounded by <span><math><mo>|</mo><mo>|</mo><mrow><mi>AB</mi></mrow><mo>|</mo><msubsup><mrow><mo>|</mo></mrow><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mo>/</mo><mi>b</mi></math></span>, where <em>b</em> is the compressed bucket size. Thus, the variance will eventually become high for a small bucket size. In this work, we address the high variance problem of CMM with the help of a simple and practical technique based on classical variance reduction methods in statistics. Our techniques rely on the Control Variate (CV) method. We suggest rigorous theoretical analysis for variance reduction and complement it via supporting empirical evidence.</p></div>","PeriodicalId":56290,"journal":{"name":"Information Processing Letters","volume":"187 ","pages":"Article 106517"},"PeriodicalIF":0.7000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving compressed matrix multiplication using control variate method\",\"authors\":\"Bhisham Dev Verma ,&nbsp;Punit Pankaj Dubey ,&nbsp;Rameshwar Pratap ,&nbsp;Manoj Thakur\",\"doi\":\"10.1016/j.ipl.2024.106517\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The seminal work by Pagh <span>[1]</span> proposed a matrix multiplication algorithm for real-valued squared matrices called Compressed Matrix Multiplication (CMM) having a sparse matrix output product. The algorithm is based on a popular sketching technique called Count-Sketch <span>[2]</span> and Fast Fourier Transform (FFT). For input square matrices <strong>A</strong> and <strong>B</strong> of order <em>n</em> and the product matrix <strong>AB</strong> with Frobenius norm <span><math><mo>|</mo><mo>|</mo><mrow><mi>AB</mi></mrow><mo>|</mo><msub><mrow><mo>|</mo></mrow><mrow><mi>F</mi></mrow></msub></math></span>, the algorithm offers an unbiased estimate for each entry, <em>i.e.</em>, <span><math><msub><mrow><mo>(</mo><mrow><mi>AB</mi></mrow><mo>)</mo></mrow><mrow><mi>i</mi><mo>,</mo><mi>j</mi></mrow></msub></math></span> of the product matrix <strong>AB</strong> with a variance bounded by <span><math><mo>|</mo><mo>|</mo><mrow><mi>AB</mi></mrow><mo>|</mo><msubsup><mrow><mo>|</mo></mrow><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mo>/</mo><mi>b</mi></math></span>, where <em>b</em> is the compressed bucket size. Thus, the variance will eventually become high for a small bucket size. In this work, we address the high variance problem of CMM with the help of a simple and practical technique based on classical variance reduction methods in statistics. Our techniques rely on the Control Variate (CV) method. We suggest rigorous theoretical analysis for variance reduction and complement it via supporting empirical evidence.</p></div>\",\"PeriodicalId\":56290,\"journal\":{\"name\":\"Information Processing Letters\",\"volume\":\"187 \",\"pages\":\"Article 106517\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Processing Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020019024000474\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020019024000474","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

Pagh [1] 的开创性工作提出了一种实值平方矩阵的矩阵乘法算法,称为压缩矩阵乘法 (CMM),具有稀疏矩阵输出乘积。该算法基于一种名为 "计数草图"(Count-Sketch)[2] 的流行草图技术和快速傅立叶变换(FFT)。对于输入的 n 阶正方形矩阵 A 和 B 以及具有 Frobenius 准则 ||AB||F 的乘积矩阵 AB,该算法为乘积矩阵 AB 的每个条目(即 (AB)i,j)提供无偏估计,其方差以 ||AB||F2/b 为界,其中 b 是压缩桶大小。因此,对于较小的压缩桶大小,方差最终会变得很大。在这项工作中,我们以统计学中的经典方差缩小方法为基础,借助一种简单实用的技术来解决 CMM 的高方差问题。我们的技术依赖于控制变量(CV)方法。我们提出了减少方差的严格理论分析,并通过支持性的经验证据对其进行补充。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving compressed matrix multiplication using control variate method

The seminal work by Pagh [1] proposed a matrix multiplication algorithm for real-valued squared matrices called Compressed Matrix Multiplication (CMM) having a sparse matrix output product. The algorithm is based on a popular sketching technique called Count-Sketch [2] and Fast Fourier Transform (FFT). For input square matrices A and B of order n and the product matrix AB with Frobenius norm ||AB||F, the algorithm offers an unbiased estimate for each entry, i.e., (AB)i,j of the product matrix AB with a variance bounded by ||AB||F2/b, where b is the compressed bucket size. Thus, the variance will eventually become high for a small bucket size. In this work, we address the high variance problem of CMM with the help of a simple and practical technique based on classical variance reduction methods in statistics. Our techniques rely on the Control Variate (CV) method. We suggest rigorous theoretical analysis for variance reduction and complement it via supporting empirical evidence.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information Processing Letters
Information Processing Letters 工程技术-计算机:信息系统
CiteScore
1.80
自引率
0.00%
发文量
70
审稿时长
7.3 months
期刊介绍: Information Processing Letters invites submission of original research articles that focus on fundamental aspects of information processing and computing. This naturally includes work in the broadly understood field of theoretical computer science; although papers in all areas of scientific inquiry will be given consideration, provided that they describe research contributions credibly motivated by applications to computing and involve rigorous methodology. High quality experimental papers that address topics of sufficiently broad interest may also be considered. Since its inception in 1971, Information Processing Letters has served as a forum for timely dissemination of short, concise and focused research contributions. Continuing with this tradition, and to expedite the reviewing process, manuscripts are generally limited in length to nine pages when they appear in print.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信