Valderio de Oliveira Cavalcanti Filho , Rod Burgass , Antonin Chapoy
{"title":"利用差示扫描湿度测量法 (DSH) 对二氧化碳和富含二氧化碳的混合物的含水量进行实验和建模研究","authors":"Valderio de Oliveira Cavalcanti Filho , Rod Burgass , Antonin Chapoy","doi":"10.1016/j.jct.2024.107328","DOIUrl":null,"url":null,"abstract":"<div><p>Monitoring humidity downstream to conditioning facilities and during transportation is essential for avoiding hydrate deposition. However, water inline monitoring under high pressure is still challenging in the CCS industry. This study presents an experimental and modelling investigation for enhancing field monitoring and model predictions. Measurements are performed using the Differential Scanning Hygrometry (DSH). This novel analytical approach has been successfully tested for measuring dew/frost temperatures for carbon dioxide, CH<sub>4</sub>+CO<sub>2</sub>, and CO<sub>2</sub>-rich mixtures in equilibrium with hydrates, free water and ice. Moreover, the DSH method has been applied for direct HP equilibrium temperature measurements. Also, this work compares three modified versions of the classical SRK EoS with the Multi-Fluid Helmholtz Energy Approximation (MFHEA). This evaluation includes Huron-Vidal and the EMS mixing rules and the cubic-plus association (CPA) approach. A thorough fitting process was carried out and, overall, comparisons with the experimental data showed that SRK + EMS yielded results as satisfactory as sCPA.</p></div>","PeriodicalId":54867,"journal":{"name":"Journal of Chemical Thermodynamics","volume":"198 ","pages":"Article 107328"},"PeriodicalIF":2.2000,"publicationDate":"2024-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0021961424000818/pdfft?md5=7212319e85508b139ba7bf126a5907f5&pid=1-s2.0-S0021961424000818-main.pdf","citationCount":"0","resultStr":"{\"title\":\"An experimental and modelling investigation on the water content of CO2and CO2-rich mixtures using the differential scanning hygrometry (DSH) method\",\"authors\":\"Valderio de Oliveira Cavalcanti Filho , Rod Burgass , Antonin Chapoy\",\"doi\":\"10.1016/j.jct.2024.107328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Monitoring humidity downstream to conditioning facilities and during transportation is essential for avoiding hydrate deposition. However, water inline monitoring under high pressure is still challenging in the CCS industry. This study presents an experimental and modelling investigation for enhancing field monitoring and model predictions. Measurements are performed using the Differential Scanning Hygrometry (DSH). This novel analytical approach has been successfully tested for measuring dew/frost temperatures for carbon dioxide, CH<sub>4</sub>+CO<sub>2</sub>, and CO<sub>2</sub>-rich mixtures in equilibrium with hydrates, free water and ice. Moreover, the DSH method has been applied for direct HP equilibrium temperature measurements. Also, this work compares three modified versions of the classical SRK EoS with the Multi-Fluid Helmholtz Energy Approximation (MFHEA). This evaluation includes Huron-Vidal and the EMS mixing rules and the cubic-plus association (CPA) approach. A thorough fitting process was carried out and, overall, comparisons with the experimental data showed that SRK + EMS yielded results as satisfactory as sCPA.</p></div>\",\"PeriodicalId\":54867,\"journal\":{\"name\":\"Journal of Chemical Thermodynamics\",\"volume\":\"198 \",\"pages\":\"Article 107328\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0021961424000818/pdfft?md5=7212319e85508b139ba7bf126a5907f5&pid=1-s2.0-S0021961424000818-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Thermodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021961424000818\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Thermodynamics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021961424000818","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
监测下游调节设施和运输过程中的湿度对于避免水合物沉积至关重要。然而,在 CCS 行业中,高压下的水在线监测仍然具有挑战性。本研究介绍了一项实验和建模调查,以加强现场监测和模型预测。测量采用差示扫描湿度计 (DSH) 进行。这种新颖的分析方法已在测量二氧化碳、CH4+CO2 以及与水合物、自由水和冰处于平衡状态的富二氧化碳混合物的露/霜温度方面进行了成功测试。此外,DSH 方法还被用于直接测量 HP 平衡温度。此外,这项工作还比较了经典 SRK EoS 的三个修正版本和多流体亥姆霍兹能量近似法(MFHEA)。该评估包括休伦-维达尔和 EMS 混合规则以及立方加关联(CPA)方法。进行了全面的拟合,总体而言,与实验数据的比较表明,SRK + EMS 产生的结果与 sCPA 一样令人满意。
An experimental and modelling investigation on the water content of CO2and CO2-rich mixtures using the differential scanning hygrometry (DSH) method
Monitoring humidity downstream to conditioning facilities and during transportation is essential for avoiding hydrate deposition. However, water inline monitoring under high pressure is still challenging in the CCS industry. This study presents an experimental and modelling investigation for enhancing field monitoring and model predictions. Measurements are performed using the Differential Scanning Hygrometry (DSH). This novel analytical approach has been successfully tested for measuring dew/frost temperatures for carbon dioxide, CH4+CO2, and CO2-rich mixtures in equilibrium with hydrates, free water and ice. Moreover, the DSH method has been applied for direct HP equilibrium temperature measurements. Also, this work compares three modified versions of the classical SRK EoS with the Multi-Fluid Helmholtz Energy Approximation (MFHEA). This evaluation includes Huron-Vidal and the EMS mixing rules and the cubic-plus association (CPA) approach. A thorough fitting process was carried out and, overall, comparisons with the experimental data showed that SRK + EMS yielded results as satisfactory as sCPA.
期刊介绍:
The Journal of Chemical Thermodynamics exists primarily for dissemination of significant new knowledge in experimental equilibrium thermodynamics and transport properties of chemical systems. The defining attributes of The Journal are the quality and relevance of the papers published.
The Journal publishes work relating to gases, liquids, solids, polymers, mixtures, solutions and interfaces. Studies on systems with variability, such as biological or bio-based materials, gas hydrates, among others, will also be considered provided these are well characterized and reproducible where possible. Experimental methods should be described in sufficient detail to allow critical assessment of the accuracy claimed.
Authors are encouraged to provide physical or chemical interpretations of the results. Articles can contain modelling sections providing representations of data or molecular insights into the properties or transformations studied. Theoretical papers on chemical thermodynamics using molecular theory or modelling are also considered.
The Journal welcomes review articles in the field of chemical thermodynamics but prospective authors should first consult one of the Editors concerning the suitability of the proposed review.
Contributions of a routine nature or reporting on uncharacterised materials are not accepted.