Junyao Ji, Xinao Ji, Ziyu Zhou, Zhichao Dai, Xuhui Chen, Jie Zhang, Zheng Jiang, Hong Zhang
{"title":"具有混合同步和异步控制逻辑的 16 位 18-MSPS 闪存辅助 SAR ADC","authors":"Junyao Ji, Xinao Ji, Ziyu Zhou, Zhichao Dai, Xuhui Chen, Jie Zhang, Zheng Jiang, Hong Zhang","doi":"10.1088/1674-4926/23120049","DOIUrl":null,"url":null,"abstract":"This paper presents a 16-bit, 18-MSPS (million samples per second) flash-assisted successive-approximation-register (SAR) analog-to-digital converter (ADC) utilizing hybrid synchronous and asynchronous (HYSAS) timing control logic based on an on-chip delay-locked loop (DLL). The HYSAS scheme can provide a longer settling time for the capacitive digital-to-analog converter (CDAC) than the synchronous and asynchronous SAR ADC. Therefore, the issue of incomplete settling or ringing in the DAC voltage for cases of either on-chip or off-chip reference voltage can be solved to a large extent. In addition, the foreground calibration of the CDAC’s mismatch is performed with a finite-impulse-response bandpass filter (FIR-BPF) based least-mean-square (LMS) algorithm in an off-chip FPGA (field programmable gate array). Fabricated in 40-nm CMOS process, the prototype ADC achieves 94.02-dB spurious-free dynamic range (SFDR), and 75.98-dB signal-to-noise-and-distortion ratio (SNDR) for a 2.88-MHz input under 18-MSPS sampling rate.","PeriodicalId":507388,"journal":{"name":"Journal of Semiconductors","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A 16-bit 18-MSPS flash-assisted SAR ADC with hybrid synchronous and asynchronous control logic\",\"authors\":\"Junyao Ji, Xinao Ji, Ziyu Zhou, Zhichao Dai, Xuhui Chen, Jie Zhang, Zheng Jiang, Hong Zhang\",\"doi\":\"10.1088/1674-4926/23120049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a 16-bit, 18-MSPS (million samples per second) flash-assisted successive-approximation-register (SAR) analog-to-digital converter (ADC) utilizing hybrid synchronous and asynchronous (HYSAS) timing control logic based on an on-chip delay-locked loop (DLL). The HYSAS scheme can provide a longer settling time for the capacitive digital-to-analog converter (CDAC) than the synchronous and asynchronous SAR ADC. Therefore, the issue of incomplete settling or ringing in the DAC voltage for cases of either on-chip or off-chip reference voltage can be solved to a large extent. In addition, the foreground calibration of the CDAC’s mismatch is performed with a finite-impulse-response bandpass filter (FIR-BPF) based least-mean-square (LMS) algorithm in an off-chip FPGA (field programmable gate array). Fabricated in 40-nm CMOS process, the prototype ADC achieves 94.02-dB spurious-free dynamic range (SFDR), and 75.98-dB signal-to-noise-and-distortion ratio (SNDR) for a 2.88-MHz input under 18-MSPS sampling rate.\",\"PeriodicalId\":507388,\"journal\":{\"name\":\"Journal of Semiconductors\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Semiconductors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1674-4926/23120049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Semiconductors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1674-4926/23120049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A 16-bit 18-MSPS flash-assisted SAR ADC with hybrid synchronous and asynchronous control logic
This paper presents a 16-bit, 18-MSPS (million samples per second) flash-assisted successive-approximation-register (SAR) analog-to-digital converter (ADC) utilizing hybrid synchronous and asynchronous (HYSAS) timing control logic based on an on-chip delay-locked loop (DLL). The HYSAS scheme can provide a longer settling time for the capacitive digital-to-analog converter (CDAC) than the synchronous and asynchronous SAR ADC. Therefore, the issue of incomplete settling or ringing in the DAC voltage for cases of either on-chip or off-chip reference voltage can be solved to a large extent. In addition, the foreground calibration of the CDAC’s mismatch is performed with a finite-impulse-response bandpass filter (FIR-BPF) based least-mean-square (LMS) algorithm in an off-chip FPGA (field programmable gate array). Fabricated in 40-nm CMOS process, the prototype ADC achieves 94.02-dB spurious-free dynamic range (SFDR), and 75.98-dB signal-to-noise-and-distortion ratio (SNDR) for a 2.88-MHz input under 18-MSPS sampling rate.