借助已知辅助参数估算种群平均值的一批改进估算器

IF 0.3 Q4 AGRICULTURE, MULTIDISCIPLINARY
Lakhan Singh, Diksha Malik, Manish Kumar, S. K. Yadav
{"title":"借助已知辅助参数估算种群平均值的一批改进估算器","authors":"Lakhan Singh, Diksha Malik, Manish Kumar, S. K. Yadav","doi":"10.59467/ijass.2024.20.299","DOIUrl":null,"url":null,"abstract":"In the presented work, we have instituted a batch of ratio type estimators for estimating the population mean under simple random sampling with the help of known auxiliary variables or function of auxiliary variables, for more refined result. The expression of bias and mean square error of the instituted class are induced up to the first order of approximation. The strength of the proposed batch of estimators is compared with some existing estimators in terms of MSEs, first theoretically and then a numerical study is also carried out by using real data set to support the findings. It is concluded that the proposed class outperforms the various prevailing estimators in terms of minimum MSE and higher percentage relative efficiency.. KEYWORDS :Estimator, Mean, Bias, Mean square error, Percentage relative efficiency, Auxiliary information.","PeriodicalId":50344,"journal":{"name":"International Journal of Agricultural and Statistical Sciences","volume":"89 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Refined batch of Estimators for Estimating Population Mean with the help of known Auxiliary Parameters\",\"authors\":\"Lakhan Singh, Diksha Malik, Manish Kumar, S. K. Yadav\",\"doi\":\"10.59467/ijass.2024.20.299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the presented work, we have instituted a batch of ratio type estimators for estimating the population mean under simple random sampling with the help of known auxiliary variables or function of auxiliary variables, for more refined result. The expression of bias and mean square error of the instituted class are induced up to the first order of approximation. The strength of the proposed batch of estimators is compared with some existing estimators in terms of MSEs, first theoretically and then a numerical study is also carried out by using real data set to support the findings. It is concluded that the proposed class outperforms the various prevailing estimators in terms of minimum MSE and higher percentage relative efficiency.. KEYWORDS :Estimator, Mean, Bias, Mean square error, Percentage relative efficiency, Auxiliary information.\",\"PeriodicalId\":50344,\"journal\":{\"name\":\"International Journal of Agricultural and Statistical Sciences\",\"volume\":\"89 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Agricultural and Statistical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.59467/ijass.2024.20.299\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Agricultural and Statistical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59467/ijass.2024.20.299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一批比率型估计器,用于在已知辅助变量或辅助变量函数的帮助下,在简单随机抽样条件下估计人口平均值,以获得更精细的结果。所建立的这一类估计器的偏差和均方误差的表达式可达到一阶近似。首先从理论上比较了所提出的一批估计器与一些现有估计器在均方误差方面的优势,然后使用真实数据集进行了数值研究,以支持研究结果。得出的结论是,在最小 MSE 和更高的相对效率百分比方面,所提出的估计类优于各种现有的估计类。关键词 :估计器、平均值、偏差、均方误差、相对效率百分比、辅助信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Refined batch of Estimators for Estimating Population Mean with the help of known Auxiliary Parameters
In the presented work, we have instituted a batch of ratio type estimators for estimating the population mean under simple random sampling with the help of known auxiliary variables or function of auxiliary variables, for more refined result. The expression of bias and mean square error of the instituted class are induced up to the first order of approximation. The strength of the proposed batch of estimators is compared with some existing estimators in terms of MSEs, first theoretically and then a numerical study is also carried out by using real data set to support the findings. It is concluded that the proposed class outperforms the various prevailing estimators in terms of minimum MSE and higher percentage relative efficiency.. KEYWORDS :Estimator, Mean, Bias, Mean square error, Percentage relative efficiency, Auxiliary information.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
66.70%
发文量
4
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信