{"title":"局部加权拓扑压力","authors":"Fangzhou Cai","doi":"10.1063/5.0195440","DOIUrl":null,"url":null,"abstract":"In [D. Feng and W. Huang, J. Math. Pures Appl. 106, 411–452 (2016)], the authors studied weighted topological pressure and established a variational principle for it. In this paper, we introduce the notion of local weighted topological pressure and generalize Feng and Huang’s main results to localized version.","PeriodicalId":508452,"journal":{"name":"Journal of Mathematical Physics","volume":"15 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local weighted topological pressure\",\"authors\":\"Fangzhou Cai\",\"doi\":\"10.1063/5.0195440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In [D. Feng and W. Huang, J. Math. Pures Appl. 106, 411–452 (2016)], the authors studied weighted topological pressure and established a variational principle for it. In this paper, we introduce the notion of local weighted topological pressure and generalize Feng and Huang’s main results to localized version.\",\"PeriodicalId\":508452,\"journal\":{\"name\":\"Journal of Mathematical Physics\",\"volume\":\"15 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0195440\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0195440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
在[D. Feng and W. Huang, J. Math. Pures Appl. 106, 411-452 (2016)]中,作者研究了加权拓扑压力,并为其建立了变分原理。在本文中,我们引入了局部加权拓扑压力的概念,并将冯和黄的主要结果推广到局部版本。
In [D. Feng and W. Huang, J. Math. Pures Appl. 106, 411–452 (2016)], the authors studied weighted topological pressure and established a variational principle for it. In this paper, we introduce the notion of local weighted topological pressure and generalize Feng and Huang’s main results to localized version.