局部加权拓扑压力

Fangzhou Cai
{"title":"局部加权拓扑压力","authors":"Fangzhou Cai","doi":"10.1063/5.0195440","DOIUrl":null,"url":null,"abstract":"In [D. Feng and W. Huang, J. Math. Pures Appl. 106, 411–452 (2016)], the authors studied weighted topological pressure and established a variational principle for it. In this paper, we introduce the notion of local weighted topological pressure and generalize Feng and Huang’s main results to localized version.","PeriodicalId":508452,"journal":{"name":"Journal of Mathematical Physics","volume":"15 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local weighted topological pressure\",\"authors\":\"Fangzhou Cai\",\"doi\":\"10.1063/5.0195440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In [D. Feng and W. Huang, J. Math. Pures Appl. 106, 411–452 (2016)], the authors studied weighted topological pressure and established a variational principle for it. In this paper, we introduce the notion of local weighted topological pressure and generalize Feng and Huang’s main results to localized version.\",\"PeriodicalId\":508452,\"journal\":{\"name\":\"Journal of Mathematical Physics\",\"volume\":\"15 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0195440\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0195440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在[D. Feng and W. Huang, J. Math. Pures Appl. 106, 411-452 (2016)]中,作者研究了加权拓扑压力,并为其建立了变分原理。在本文中,我们引入了局部加权拓扑压力的概念,并将冯和黄的主要结果推广到局部版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Local weighted topological pressure
In [D. Feng and W. Huang, J. Math. Pures Appl. 106, 411–452 (2016)], the authors studied weighted topological pressure and established a variational principle for it. In this paper, we introduce the notion of local weighted topological pressure and generalize Feng and Huang’s main results to localized version.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信