分数比例线性控制系统:可控性和可观测性的几何视角

IF 1.1 Q1 MATHEMATICS
Khizra Bukhsh, A. Younus, A. Mukheimer, T. Abdeljawad
{"title":"分数比例线性控制系统:可控性和可观测性的几何视角","authors":"Khizra Bukhsh, A. Younus, A. Mukheimer, T. Abdeljawad","doi":"10.33205/cma.1454113","DOIUrl":null,"url":null,"abstract":"The paper presents a detailed analysis of control and observation of generalized Caputo proportional fractional time-invariant linear systems. The focus is on identifying controllable states and observable systems within the controllable subspace, null space, and unobservable subspace of the proposed system. The necessary conditions for the controllable subspace and the necessary and sufficient conditions for observability criteria are firmly established. The controllable subspace is treated geometrically as the set of controllable states, while the observable system is characterized by a zero unobservable subspace. The results are reinforced by examples and will immensely benefit future studies on fractional-order control systems.","PeriodicalId":36038,"journal":{"name":"Constructive Mathematical Analysis","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fractional Proportional Linear Control Systems: A Geometric Perspective on Controllability and Observability\",\"authors\":\"Khizra Bukhsh, A. Younus, A. Mukheimer, T. Abdeljawad\",\"doi\":\"10.33205/cma.1454113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents a detailed analysis of control and observation of generalized Caputo proportional fractional time-invariant linear systems. The focus is on identifying controllable states and observable systems within the controllable subspace, null space, and unobservable subspace of the proposed system. The necessary conditions for the controllable subspace and the necessary and sufficient conditions for observability criteria are firmly established. The controllable subspace is treated geometrically as the set of controllable states, while the observable system is characterized by a zero unobservable subspace. The results are reinforced by examples and will immensely benefit future studies on fractional-order control systems.\",\"PeriodicalId\":36038,\"journal\":{\"name\":\"Constructive Mathematical Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Constructive Mathematical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33205/cma.1454113\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Constructive Mathematical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33205/cma.1454113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文详细分析了广义卡普托比例分数时变线性系统的控制和观测。重点是确定拟议系统的可控子空间、空空间和不可观测子空间内的可控状态和可观测系统。可控子空间的必要条件以及可观测性标准的必要条件和充分条件已牢固确立。可控子空间被几何地视为可控状态集,而可观测系统则以零不可观测子空间为特征。这些结果通过实例得到了加强,并将极大地有益于未来对分数阶控制系统的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fractional Proportional Linear Control Systems: A Geometric Perspective on Controllability and Observability
The paper presents a detailed analysis of control and observation of generalized Caputo proportional fractional time-invariant linear systems. The focus is on identifying controllable states and observable systems within the controllable subspace, null space, and unobservable subspace of the proposed system. The necessary conditions for the controllable subspace and the necessary and sufficient conditions for observability criteria are firmly established. The controllable subspace is treated geometrically as the set of controllable states, while the observable system is characterized by a zero unobservable subspace. The results are reinforced by examples and will immensely benefit future studies on fractional-order control systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Constructive Mathematical Analysis
Constructive Mathematical Analysis Mathematics-Analysis
CiteScore
2.40
自引率
0.00%
发文量
18
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信