基于ab initio分子动力学模拟的镁合金在水中的阳极溶解动力学

Jieqiong Yan, Xinchen Xu, Gaoning Shi, Yaowei Wang, Chaohong Guan, Yuyang Chen, Yao Yang, Tao Ying, Hong Zhu, Qingli Tang, Xiaoqin Zeng
{"title":"基于ab initio分子动力学模拟的镁合金在水中的阳极溶解动力学","authors":"Jieqiong Yan,&nbsp;Xinchen Xu,&nbsp;Gaoning Shi,&nbsp;Yaowei Wang,&nbsp;Chaohong Guan,&nbsp;Yuyang Chen,&nbsp;Yao Yang,&nbsp;Tao Ying,&nbsp;Hong Zhu,&nbsp;Qingli Tang,&nbsp;Xiaoqin Zeng","doi":"10.1002/mgea.47","DOIUrl":null,"url":null,"abstract":"<p>The corrosion susceptibility of magnesium (Mg) alloys presents a significant challenge for their broad application. Although there have been extensive experimental and theoretical investigations, the corrosion mechanisms of Mg alloys are still unclear, especially the anodic dissolution process. Here, a thorough theoretical investigation based on ab initio molecular dynamics and metadynamics simulations has been conducted to clarify the underlying corrosion mechanism of Mg anode and propose effective strategies for enhancing corrosion resistance. Through comprehensive analyses of interfacial structures and equilibrium potentials for Mg(0001)/H<sub>2</sub>O interface models with different water thicknesses, the Mg(0001)/72 H<sub>2</sub>O model is identified to be reasonable with −2.17 V vs. standard hydrogen electrode equilibrium potential. In addition, utilizing metadynamics, the free energy barrier for Mg dissolution is calculated to be 0.835 eV, enabling the theoretical determination of anodic polarization curves for pure Mg that aligns well with experimental data. Based on the Mg(0001)/72 H<sub>2</sub>O model, we further explore the effects of various alloying elements on anodic corrosion resistance, among which Al and Mn alloying elements are found to enhance corrosion resistance of Mg. This study provides valuable atomic-scale insights into the corrosion mechanism of magnesium alloys, offering theoretical guidance for developing novel corrosion-resistant Mg alloys.</p>","PeriodicalId":100889,"journal":{"name":"Materials Genome Engineering Advances","volume":"2 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mgea.47","citationCount":"0","resultStr":"{\"title\":\"The anodic dissolution kinetics of Mg alloys in water based on ab initio molecular dynamics simulations\",\"authors\":\"Jieqiong Yan,&nbsp;Xinchen Xu,&nbsp;Gaoning Shi,&nbsp;Yaowei Wang,&nbsp;Chaohong Guan,&nbsp;Yuyang Chen,&nbsp;Yao Yang,&nbsp;Tao Ying,&nbsp;Hong Zhu,&nbsp;Qingli Tang,&nbsp;Xiaoqin Zeng\",\"doi\":\"10.1002/mgea.47\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The corrosion susceptibility of magnesium (Mg) alloys presents a significant challenge for their broad application. Although there have been extensive experimental and theoretical investigations, the corrosion mechanisms of Mg alloys are still unclear, especially the anodic dissolution process. Here, a thorough theoretical investigation based on ab initio molecular dynamics and metadynamics simulations has been conducted to clarify the underlying corrosion mechanism of Mg anode and propose effective strategies for enhancing corrosion resistance. Through comprehensive analyses of interfacial structures and equilibrium potentials for Mg(0001)/H<sub>2</sub>O interface models with different water thicknesses, the Mg(0001)/72 H<sub>2</sub>O model is identified to be reasonable with −2.17 V vs. standard hydrogen electrode equilibrium potential. In addition, utilizing metadynamics, the free energy barrier for Mg dissolution is calculated to be 0.835 eV, enabling the theoretical determination of anodic polarization curves for pure Mg that aligns well with experimental data. Based on the Mg(0001)/72 H<sub>2</sub>O model, we further explore the effects of various alloying elements on anodic corrosion resistance, among which Al and Mn alloying elements are found to enhance corrosion resistance of Mg. This study provides valuable atomic-scale insights into the corrosion mechanism of magnesium alloys, offering theoretical guidance for developing novel corrosion-resistant Mg alloys.</p>\",\"PeriodicalId\":100889,\"journal\":{\"name\":\"Materials Genome Engineering Advances\",\"volume\":\"2 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mgea.47\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Genome Engineering Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mgea.47\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Genome Engineering Advances","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mgea.47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

镁(Mg)合金的易腐蚀性为其广泛应用带来了巨大挑战。虽然已有大量的实验和理论研究,但镁合金的腐蚀机理仍不清楚,尤其是阳极溶解过程。在此,我们基于ab initio分子动力学和元动力学模拟进行了深入的理论研究,以阐明镁阳极的潜在腐蚀机理,并提出增强耐腐蚀性的有效策略。通过对不同水厚度的 Mg(0001)/H2O 界面模型的界面结构和平衡电位的综合分析,确定了 Mg(0001)/72 H2O 模型是合理的,其与标准氢电极的平衡电位为 -2.17 V。此外,利用元动力学,计算出镁溶解的自由能障为 0.835 eV,从而理论确定了纯镁的阳极极化曲线,该曲线与实验数据非常吻合。在 Mg(0001)/72 H2O 模型的基础上,我们进一步探讨了各种合金元素对阳极耐腐蚀性的影响,其中发现 Al 和 Mn 合金元素能增强镁的耐腐蚀性。这项研究为了解镁合金的腐蚀机理提供了宝贵的原子尺度见解,为开发新型耐腐蚀镁合金提供了理论指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The anodic dissolution kinetics of Mg alloys in water based on ab initio molecular dynamics simulations

The anodic dissolution kinetics of Mg alloys in water based on ab initio molecular dynamics simulations

The corrosion susceptibility of magnesium (Mg) alloys presents a significant challenge for their broad application. Although there have been extensive experimental and theoretical investigations, the corrosion mechanisms of Mg alloys are still unclear, especially the anodic dissolution process. Here, a thorough theoretical investigation based on ab initio molecular dynamics and metadynamics simulations has been conducted to clarify the underlying corrosion mechanism of Mg anode and propose effective strategies for enhancing corrosion resistance. Through comprehensive analyses of interfacial structures and equilibrium potentials for Mg(0001)/H2O interface models with different water thicknesses, the Mg(0001)/72 H2O model is identified to be reasonable with −2.17 V vs. standard hydrogen electrode equilibrium potential. In addition, utilizing metadynamics, the free energy barrier for Mg dissolution is calculated to be 0.835 eV, enabling the theoretical determination of anodic polarization curves for pure Mg that aligns well with experimental data. Based on the Mg(0001)/72 H2O model, we further explore the effects of various alloying elements on anodic corrosion resistance, among which Al and Mn alloying elements are found to enhance corrosion resistance of Mg. This study provides valuable atomic-scale insights into the corrosion mechanism of magnesium alloys, offering theoretical guidance for developing novel corrosion-resistant Mg alloys.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信