借助概率整形和端到端深度学习的大容量相干波分复用网络

Q4 Engineering
Ayam M. Abbass, Raad Fyath
{"title":"借助概率整形和端到端深度学习的大容量相干波分复用网络","authors":"Ayam M. Abbass, Raad Fyath","doi":"10.26636/jtit.2024.2.1482","DOIUrl":null,"url":null,"abstract":"To optimize the functionality of coherent optical fiber communication (OFC) systems and enhance their capacity related to long-haul transmissions, wavelength-division multiplexing (WDM) and probabilistic constellation shaping (PCS) techniques have been used. This paper develops an end-to-end (E2E) deep learning (DL)-based PCS algorithm, i.e., autoencoder (AE) for a high-order modulation format WDM system that minimizes nonlinear effects while ensuring high capacity and considers system parameters, in particular those related to the OFC channel. Only the AE of the central channel is trained to meet the specified performance objective, as the system design employs identical AEs in each WDM channel. The simulation results show that the architecture should consist of two hidden layers, with thirty two nodes per hidden layer and a ”32×modulation order” batch size to obtain optimal system performance, when designing AE using a dense layer neural network. The behavior of the AE is examined to determine the optimum launch-power ranges that enhance the system's performance. The developed AE-based PCS-WDM provides a 0.4 shaping gain and outperforms conventional solutions.","PeriodicalId":38425,"journal":{"name":"Journal of Telecommunications and Information Technology","volume":"28 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-Capacity Coherent WDM Networks Empowered by Probabilistic Shaping and End-to-End Deep Learning\",\"authors\":\"Ayam M. Abbass, Raad Fyath\",\"doi\":\"10.26636/jtit.2024.2.1482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To optimize the functionality of coherent optical fiber communication (OFC) systems and enhance their capacity related to long-haul transmissions, wavelength-division multiplexing (WDM) and probabilistic constellation shaping (PCS) techniques have been used. This paper develops an end-to-end (E2E) deep learning (DL)-based PCS algorithm, i.e., autoencoder (AE) for a high-order modulation format WDM system that minimizes nonlinear effects while ensuring high capacity and considers system parameters, in particular those related to the OFC channel. Only the AE of the central channel is trained to meet the specified performance objective, as the system design employs identical AEs in each WDM channel. The simulation results show that the architecture should consist of two hidden layers, with thirty two nodes per hidden layer and a ”32×modulation order” batch size to obtain optimal system performance, when designing AE using a dense layer neural network. The behavior of the AE is examined to determine the optimum launch-power ranges that enhance the system's performance. The developed AE-based PCS-WDM provides a 0.4 shaping gain and outperforms conventional solutions.\",\"PeriodicalId\":38425,\"journal\":{\"name\":\"Journal of Telecommunications and Information Technology\",\"volume\":\"28 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Telecommunications and Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26636/jtit.2024.2.1482\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Telecommunications and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26636/jtit.2024.2.1482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

为了优化相干光纤通信(OFC)系统的功能并提高其长途传输能力,人们使用了波分复用(WDM)和概率星座整形(PCS)技术。本文为高阶调制格式波分复用系统开发了一种基于端到端(E2E)深度学习(DL)的 PCS 算法,即自动编码器(AE),该算法在确保高容量的同时最大限度地减少了非线性效应,并考虑了系统参数,特别是与 OFC 信道相关的参数。由于系统设计在每个波分复用信道中采用了相同的自动编码器,因此只对中央信道的自动编码器进行了训练,以达到指定的性能目标。模拟结果表明,在使用密集层神经网络设计 AE 时,结构应由两个隐藏层组成,每个隐藏层有 32 个节点,批量大小为 "32×调制阶",以获得最佳系统性能。对 AE 的行为进行研究,以确定能提高系统性能的最佳发射功率范围。所开发的基于 AE 的 PCS-WDM 可提供 0.4 的整形增益,性能优于传统解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-Capacity Coherent WDM Networks Empowered by Probabilistic Shaping and End-to-End Deep Learning
To optimize the functionality of coherent optical fiber communication (OFC) systems and enhance their capacity related to long-haul transmissions, wavelength-division multiplexing (WDM) and probabilistic constellation shaping (PCS) techniques have been used. This paper develops an end-to-end (E2E) deep learning (DL)-based PCS algorithm, i.e., autoencoder (AE) for a high-order modulation format WDM system that minimizes nonlinear effects while ensuring high capacity and considers system parameters, in particular those related to the OFC channel. Only the AE of the central channel is trained to meet the specified performance objective, as the system design employs identical AEs in each WDM channel. The simulation results show that the architecture should consist of two hidden layers, with thirty two nodes per hidden layer and a ”32×modulation order” batch size to obtain optimal system performance, when designing AE using a dense layer neural network. The behavior of the AE is examined to determine the optimum launch-power ranges that enhance the system's performance. The developed AE-based PCS-WDM provides a 0.4 shaping gain and outperforms conventional solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Telecommunications and Information Technology
Journal of Telecommunications and Information Technology Engineering-Electrical and Electronic Engineering
CiteScore
1.20
自引率
0.00%
发文量
34
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信