论使用集合学习算法接近 Scheil-Gulliver 公式中的分区系数 (k) 值的潜力

Ziyu Li, He Tan, Anders E. W. Jarfors, Jacob Steggo, Lucia Lattanzi, Per Jansson
{"title":"论使用集合学习算法接近 Scheil-Gulliver 公式中的分区系数 (k) 值的潜力","authors":"Ziyu Li,&nbsp;He Tan,&nbsp;Anders E. W. Jarfors,&nbsp;Jacob Steggo,&nbsp;Lucia Lattanzi,&nbsp;Per Jansson","doi":"10.1002/mgea.46","DOIUrl":null,"url":null,"abstract":"<p>The Scheil–Gulliver equation is essential for assessing solid fractions during alloy solidification in materials science. Despite the prevalent use of the Calculation of Phase Diagrams (CALPHAD) method, its computational intensity and time are limiting the simulation efficiency. Recently, Artificial Intelligence has emerged as a potent tool in materials science, offering robust and reliable predictive modeling capabilities. This study introduces an ensemble-based method that has the potential to enhance the prediction of the partitioning coefficient (<i>k</i>) in the Scheil equation by inputting various alloy compositions. The findings demonstrate that this approach can predict the temperature and solid fraction at the eutectic temperature with an accuracy exceeding 90%, while the accuracy for k prediction surpasses 70%. Additionally, a case study on a commercial alloy revealed that the model's predictions are within a 5°C deviation from experimental results, and the predicted solid fraction at the eutectic temperature is within a 15% difference of the values obtained from the CALPHAD model.</p>","PeriodicalId":100889,"journal":{"name":"Materials Genome Engineering Advances","volume":"2 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mgea.46","citationCount":"0","resultStr":"{\"title\":\"On the potential of using ensemble learning algorithm to approach the partitioning coefficient (k) value in Scheil–Gulliver equation\",\"authors\":\"Ziyu Li,&nbsp;He Tan,&nbsp;Anders E. W. Jarfors,&nbsp;Jacob Steggo,&nbsp;Lucia Lattanzi,&nbsp;Per Jansson\",\"doi\":\"10.1002/mgea.46\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Scheil–Gulliver equation is essential for assessing solid fractions during alloy solidification in materials science. Despite the prevalent use of the Calculation of Phase Diagrams (CALPHAD) method, its computational intensity and time are limiting the simulation efficiency. Recently, Artificial Intelligence has emerged as a potent tool in materials science, offering robust and reliable predictive modeling capabilities. This study introduces an ensemble-based method that has the potential to enhance the prediction of the partitioning coefficient (<i>k</i>) in the Scheil equation by inputting various alloy compositions. The findings demonstrate that this approach can predict the temperature and solid fraction at the eutectic temperature with an accuracy exceeding 90%, while the accuracy for k prediction surpasses 70%. Additionally, a case study on a commercial alloy revealed that the model's predictions are within a 5°C deviation from experimental results, and the predicted solid fraction at the eutectic temperature is within a 15% difference of the values obtained from the CALPHAD model.</p>\",\"PeriodicalId\":100889,\"journal\":{\"name\":\"Materials Genome Engineering Advances\",\"volume\":\"2 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mgea.46\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Genome Engineering Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mgea.46\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Genome Engineering Advances","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mgea.46","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在材料科学中,Scheil-Gulliver 方程对于评估合金凝固过程中的固体分数至关重要。尽管相图计算(CALPHAD)方法得到了广泛应用,但其计算强度和时间限制了模拟效率。最近,人工智能已成为材料科学领域的有力工具,可提供稳健可靠的预测建模能力。本研究介绍了一种基于集合的方法,通过输入各种合金成分,该方法有可能提高 Scheil 方程中分配系数 (k) 的预测能力。研究结果表明,这种方法可以预测共晶温度下的温度和固体分数,准确率超过 90%,而 k 预测的准确率超过 70%。此外,对一种商用合金的案例研究表明,该模型的预测值与实验结果的偏差在 5°C 以内,共晶温度下的预测固体分数与 CALPHAD 模型得出的值的偏差在 15%以内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On the potential of using ensemble learning algorithm to approach the partitioning coefficient (k) value in Scheil–Gulliver equation

On the potential of using ensemble learning algorithm to approach the partitioning coefficient (k) value in Scheil–Gulliver equation

The Scheil–Gulliver equation is essential for assessing solid fractions during alloy solidification in materials science. Despite the prevalent use of the Calculation of Phase Diagrams (CALPHAD) method, its computational intensity and time are limiting the simulation efficiency. Recently, Artificial Intelligence has emerged as a potent tool in materials science, offering robust and reliable predictive modeling capabilities. This study introduces an ensemble-based method that has the potential to enhance the prediction of the partitioning coefficient (k) in the Scheil equation by inputting various alloy compositions. The findings demonstrate that this approach can predict the temperature and solid fraction at the eutectic temperature with an accuracy exceeding 90%, while the accuracy for k prediction surpasses 70%. Additionally, a case study on a commercial alloy revealed that the model's predictions are within a 5°C deviation from experimental results, and the predicted solid fraction at the eutectic temperature is within a 15% difference of the values obtained from the CALPHAD model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信