大数据挖掘行为的认知正义问题研究

Leiyin Wang
{"title":"大数据挖掘行为的认知正义问题研究","authors":"Leiyin Wang","doi":"10.55574/aysi1012","DOIUrl":null,"url":null,"abstract":"随着大数据时代的降临,算法技术的正当性问题引发人们关注。区别于算法正义和数据正义,认知正义以认知主体为视角并具有法律意义,要求认知主体的认知水平与认知客体的可信度相匹配。实践中存在对大数据挖掘所获证据的证明力进行天然推定,证明标准难以对法官心证形成控制的现状。这是由于大数据挖掘基于相关关系的思维冲击了人们的认知惯性,将解释权交给了算法,降低了认知水平,算法黑箱的不透明性和难以检验性导致认知客体本不应当赋予过高的可信度,算法歧视导致难以对二者匹配的过程进行矫正。需要将内心确信符合信念标准、偏见性算法信息应仅发挥补强性作用、将大数据挖掘所获信息在辩护人阅卷中进行披露、破除相互印证的因果逻辑桎梏,从而回归于认知正义,走向法治而非“算法治”。 Abstract: With the emergence of the big data era, questions about the legitimacy of algorithmic technologies have arisen. Distinguished from algorithmic justice and data justice, cognitive justice takes the perspective of the cognitive subject and has legal significance, requiring the cognitive level of the cognitive subject to match the credibility of the cognitive object. In practice, there is a natural presumption of the probative power of evidence obtained by big data mining, and the standard of proof is difficult to control the judge’s mental evidence. This is due to the big data mining based on the correlation of thinking impacts the cognitive inertia of people, the interpretation of the right to the algorithm, reducing the level of cognition, the opacity of the black box of the algorithm and difficult to test leads to the cognitive object should not have been given too much credibility, the algorithmic discrimination leads to the difficulty of the process of correcting the matching of the two. There is a need to return to cognitive justice, towards the rule of law rather than the “rule of law”, by bringing inner certainty in line with the standard of conviction, biased algorithmic information should play only a reinforcing role, disclosure of the information obtained from big data mining in the reading of the defense case file and breaking the shackles of the causal logic of mutual corroboration.","PeriodicalId":512508,"journal":{"name":"China Law Journal","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"大数据挖掘行为的认知正义问题研究\",\"authors\":\"Leiyin Wang\",\"doi\":\"10.55574/aysi1012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"随着大数据时代的降临,算法技术的正当性问题引发人们关注。区别于算法正义和数据正义,认知正义以认知主体为视角并具有法律意义,要求认知主体的认知水平与认知客体的可信度相匹配。实践中存在对大数据挖掘所获证据的证明力进行天然推定,证明标准难以对法官心证形成控制的现状。这是由于大数据挖掘基于相关关系的思维冲击了人们的认知惯性,将解释权交给了算法,降低了认知水平,算法黑箱的不透明性和难以检验性导致认知客体本不应当赋予过高的可信度,算法歧视导致难以对二者匹配的过程进行矫正。需要将内心确信符合信念标准、偏见性算法信息应仅发挥补强性作用、将大数据挖掘所获信息在辩护人阅卷中进行披露、破除相互印证的因果逻辑桎梏,从而回归于认知正义,走向法治而非“算法治”。 Abstract: With the emergence of the big data era, questions about the legitimacy of algorithmic technologies have arisen. Distinguished from algorithmic justice and data justice, cognitive justice takes the perspective of the cognitive subject and has legal significance, requiring the cognitive level of the cognitive subject to match the credibility of the cognitive object. In practice, there is a natural presumption of the probative power of evidence obtained by big data mining, and the standard of proof is difficult to control the judge’s mental evidence. This is due to the big data mining based on the correlation of thinking impacts the cognitive inertia of people, the interpretation of the right to the algorithm, reducing the level of cognition, the opacity of the black box of the algorithm and difficult to test leads to the cognitive object should not have been given too much credibility, the algorithmic discrimination leads to the difficulty of the process of correcting the matching of the two. There is a need to return to cognitive justice, towards the rule of law rather than the “rule of law”, by bringing inner certainty in line with the standard of conviction, biased algorithmic information should play only a reinforcing role, disclosure of the information obtained from big data mining in the reading of the defense case file and breaking the shackles of the causal logic of mutual corroboration.\",\"PeriodicalId\":512508,\"journal\":{\"name\":\"China Law Journal\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"China Law Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55574/aysi1012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"China Law Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55574/aysi1012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着大数据时代的降临,算法技术的正当性问题引发人们关注。区别于算法正义和数据正义,认知正义以认知主体为视角并具有法律意义,要求认知主体的认知水平与认知客体的可信度相匹配。实践中存在对大数据挖掘所获证据的证明力进行天然推定,证明标准难以对法官心证形成控制的现状。这是由于大数据挖掘基于相关关系的思维冲击了人们的认知惯性,将解释权交给了算法,降低了认知水平,算法黑箱的不透明性和难以检验性导致认知客体本不应当赋予过高的可信度,算法歧视导致难以对二者匹配的过程进行矫正。需要将内心确信符合信念标准、偏见性算法信息应仅发挥补强性作用、将大数据挖掘所获信息在辩护人阅卷中进行披露、破除相互印证的因果逻辑桎梏,从而回归于认知正义,走向法治而非“算法治”。摘要随着大数据时代的到来,人们对算法技术的合法性产生了质疑。区别于算法正义和数据正义,认知正义从认知主体的角度出发,具有法律意义,要求认知主体的认知水平与认知客体的公信力相匹配。实践中,对大数据挖掘所获得证据的证明力存在天然的推定,证明标准难以控制法官的心证。这是由于基于大数据挖掘的关联性思维冲击了人们的认知惯性,将解释权交给了算法,降低了人们的认知水平,算法黑箱的不透明性和难以检验性导致认知客体本不应被赋予过多的可信度,算法判别导致二者匹配的纠错过程困难重重。有必要回归认知正义,走向法治而非 "法治",通过将内心确定性与定罪标准接轨,有失偏颇的算法信息只应起到强化作用,在辩方阅卷中披露大数据挖掘获得的信息,打破因果逻辑相互印证的桎梏。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
大数据挖掘行为的认知正义问题研究
随着大数据时代的降临,算法技术的正当性问题引发人们关注。区别于算法正义和数据正义,认知正义以认知主体为视角并具有法律意义,要求认知主体的认知水平与认知客体的可信度相匹配。实践中存在对大数据挖掘所获证据的证明力进行天然推定,证明标准难以对法官心证形成控制的现状。这是由于大数据挖掘基于相关关系的思维冲击了人们的认知惯性,将解释权交给了算法,降低了认知水平,算法黑箱的不透明性和难以检验性导致认知客体本不应当赋予过高的可信度,算法歧视导致难以对二者匹配的过程进行矫正。需要将内心确信符合信念标准、偏见性算法信息应仅发挥补强性作用、将大数据挖掘所获信息在辩护人阅卷中进行披露、破除相互印证的因果逻辑桎梏,从而回归于认知正义,走向法治而非“算法治”。 Abstract: With the emergence of the big data era, questions about the legitimacy of algorithmic technologies have arisen. Distinguished from algorithmic justice and data justice, cognitive justice takes the perspective of the cognitive subject and has legal significance, requiring the cognitive level of the cognitive subject to match the credibility of the cognitive object. In practice, there is a natural presumption of the probative power of evidence obtained by big data mining, and the standard of proof is difficult to control the judge’s mental evidence. This is due to the big data mining based on the correlation of thinking impacts the cognitive inertia of people, the interpretation of the right to the algorithm, reducing the level of cognition, the opacity of the black box of the algorithm and difficult to test leads to the cognitive object should not have been given too much credibility, the algorithmic discrimination leads to the difficulty of the process of correcting the matching of the two. There is a need to return to cognitive justice, towards the rule of law rather than the “rule of law”, by bringing inner certainty in line with the standard of conviction, biased algorithmic information should play only a reinforcing role, disclosure of the information obtained from big data mining in the reading of the defense case file and breaking the shackles of the causal logic of mutual corroboration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信