文本匹配技术概览

Information Pub Date : 2024-06-05 DOI:10.3390/info15060332
Peng Jiang, Xiao-Sheng Cai
{"title":"文本匹配技术概览","authors":"Peng Jiang, Xiao-Sheng Cai","doi":"10.3390/info15060332","DOIUrl":null,"url":null,"abstract":"Text matching, as a core technology of natural language processing, plays a key role in tasks such as question-and-answer systems and information retrieval. In recent years, the development of neural networks, attention mechanisms, and large-scale language models has significantly contributed to the advancement of text-matching technology. However, the rapid development of the field also poses challenges in fully understanding the overall impact of these technological improvements. This paper aims to provide a concise, yet in-depth, overview of the field of text matching, sorting out the main ideas, problems, and solutions for text-matching methods based on statistical methods and neural networks, as well as delving into matching methods based on large-scale language models, and discussing the related configurations, API applications, datasets, and evaluation methods. In addition, this paper outlines the applications and classifications of text matching in specific domains and discusses the current open problems that are being faced and future research directions, to provide useful references for further developments in the field.","PeriodicalId":510156,"journal":{"name":"Information","volume":"343 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Survey of Text-Matching Techniques\",\"authors\":\"Peng Jiang, Xiao-Sheng Cai\",\"doi\":\"10.3390/info15060332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Text matching, as a core technology of natural language processing, plays a key role in tasks such as question-and-answer systems and information retrieval. In recent years, the development of neural networks, attention mechanisms, and large-scale language models has significantly contributed to the advancement of text-matching technology. However, the rapid development of the field also poses challenges in fully understanding the overall impact of these technological improvements. This paper aims to provide a concise, yet in-depth, overview of the field of text matching, sorting out the main ideas, problems, and solutions for text-matching methods based on statistical methods and neural networks, as well as delving into matching methods based on large-scale language models, and discussing the related configurations, API applications, datasets, and evaluation methods. In addition, this paper outlines the applications and classifications of text matching in specific domains and discusses the current open problems that are being faced and future research directions, to provide useful references for further developments in the field.\",\"PeriodicalId\":510156,\"journal\":{\"name\":\"Information\",\"volume\":\"343 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/info15060332\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/info15060332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

文本匹配作为自然语言处理的核心技术,在问答系统和信息检索等任务中发挥着关键作用。近年来,神经网络、注意力机制和大规模语言模型的发展极大地推动了文本匹配技术的进步。然而,该领域的快速发展也给充分理解这些技术改进的整体影响带来了挑战。本文旨在简明而深入地概述文本匹配领域,梳理基于统计方法和神经网络的文本匹配方法的主要思路、问题和解决方案,并深入探讨基于大规模语言模型的匹配方法,讨论相关配置、API 应用、数据集和评估方法。此外,本文还概述了文本匹配在特定领域的应用和分类,讨论了当前面临的开放性问题和未来的研究方向,为该领域的进一步发展提供了有益的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Survey of Text-Matching Techniques
Text matching, as a core technology of natural language processing, plays a key role in tasks such as question-and-answer systems and information retrieval. In recent years, the development of neural networks, attention mechanisms, and large-scale language models has significantly contributed to the advancement of text-matching technology. However, the rapid development of the field also poses challenges in fully understanding the overall impact of these technological improvements. This paper aims to provide a concise, yet in-depth, overview of the field of text matching, sorting out the main ideas, problems, and solutions for text-matching methods based on statistical methods and neural networks, as well as delving into matching methods based on large-scale language models, and discussing the related configurations, API applications, datasets, and evaluation methods. In addition, this paper outlines the applications and classifications of text matching in specific domains and discusses the current open problems that are being faced and future research directions, to provide useful references for further developments in the field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信