混合和部分成员诊断分类模型与多维项目反应模型的比较

Information Pub Date : 2024-06-05 DOI:10.3390/info15060331
Alexander Robitzsch 
{"title":"混合和部分成员诊断分类模型与多维项目反应模型的比较","authors":"Alexander Robitzsch ","doi":"10.3390/info15060331","DOIUrl":null,"url":null,"abstract":"Diagnostic classification models (DCM) are latent structure models with discrete multivariate latent variables. Recently, extensions of DCMs to mixed membership have been proposed. In this article, ordinary DCMs, mixed and partial membership models, and multidimensional item response theory (IRT) models are compared through analytical derivations, three example datasets, and a simulation study. It is concluded that partial membership DCMs are similar, if not structurally equivalent, to sufficiently complex multidimensional IRT models.","PeriodicalId":510156,"journal":{"name":"Information","volume":"20 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Comparison of Mixed and Partial Membership Diagnostic Classification Models with Multidimensional Item Response Models\",\"authors\":\"Alexander Robitzsch \",\"doi\":\"10.3390/info15060331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diagnostic classification models (DCM) are latent structure models with discrete multivariate latent variables. Recently, extensions of DCMs to mixed membership have been proposed. In this article, ordinary DCMs, mixed and partial membership models, and multidimensional item response theory (IRT) models are compared through analytical derivations, three example datasets, and a simulation study. It is concluded that partial membership DCMs are similar, if not structurally equivalent, to sufficiently complex multidimensional IRT models.\",\"PeriodicalId\":510156,\"journal\":{\"name\":\"Information\",\"volume\":\"20 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/info15060331\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/info15060331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

诊断分类模型(DCM)是具有离散多变量潜变量的潜结构模型。最近,有人提出将 DCM 扩展到混合成员模型。本文通过分析推导、三个示例数据集和模拟研究,对普通 DCM、混合和部分成员模型以及多维项目反应理论(IRT)模型进行了比较。结论是部分成员 DCM 与足够复杂的多维 IRT 模型相似,甚至在结构上是等价的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Comparison of Mixed and Partial Membership Diagnostic Classification Models with Multidimensional Item Response Models
Diagnostic classification models (DCM) are latent structure models with discrete multivariate latent variables. Recently, extensions of DCMs to mixed membership have been proposed. In this article, ordinary DCMs, mixed and partial membership models, and multidimensional item response theory (IRT) models are compared through analytical derivations, three example datasets, and a simulation study. It is concluded that partial membership DCMs are similar, if not structurally equivalent, to sufficiently complex multidimensional IRT models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信