利用机器学习分析飞机行为的飞机分类方法

Q2 Social Sciences
Nicolas Vincent-Boulay, Catharine Marsden
{"title":"利用机器学习分析飞机行为的飞机分类方法","authors":"Nicolas Vincent-Boulay, Catharine Marsden","doi":"10.2514/1.d0398","DOIUrl":null,"url":null,"abstract":"The establishment of aircraft categories is a classification technique employed in a variety of aviation disciplines, including design and development, certification, ongoing airworthiness, air traffic management, surveillance, and safety analysis. Traditional approaches rely on manual feature engineering, which can be labor-intensive and ineffective for capturing complex patterns. In this paper, an approach to aircraft categorization using unsupervised machine learning clustering is proposed. The aim of the proposed approach is to be simple in order to be useful and understandable across disciplinary domains; to be scalable to large volumes of air traffic data; and to be adaptable to changes to account for the evolving technological and operational nature of the airspace environment. The application is based on an adapted version of the [Formula: see text]-means algorithm that can group aircraft into clusters based on 3D position over time. The approach is validated using real-world, publicly available ADS-B air traffic data, and the results are compared to traditional categorization methods from the field of aircraft certification. The results showed that the model could be used to 1) identify and group aircraft sharing the same flight phase, 2) categorize aircraft with a similar general heading or direction, and 3) distinguish between local regional aircraft operations and longer flight operations. It was also shown that, depending on the use case, the model could be extended to identify more granular behaviors by increasing the [Formula: see text] value used to create the model. Overall, the findings demonstrate that leveraging machine learning techniques for aircraft categorization provides an effective, automated, and scalable solution applicable to a wide range of current applications.","PeriodicalId":36984,"journal":{"name":"Journal of Air Transportation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aircraft Categorization Approach Using Machine Learning to Analyze Aircraft Behavior\",\"authors\":\"Nicolas Vincent-Boulay, Catharine Marsden\",\"doi\":\"10.2514/1.d0398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The establishment of aircraft categories is a classification technique employed in a variety of aviation disciplines, including design and development, certification, ongoing airworthiness, air traffic management, surveillance, and safety analysis. Traditional approaches rely on manual feature engineering, which can be labor-intensive and ineffective for capturing complex patterns. In this paper, an approach to aircraft categorization using unsupervised machine learning clustering is proposed. The aim of the proposed approach is to be simple in order to be useful and understandable across disciplinary domains; to be scalable to large volumes of air traffic data; and to be adaptable to changes to account for the evolving technological and operational nature of the airspace environment. The application is based on an adapted version of the [Formula: see text]-means algorithm that can group aircraft into clusters based on 3D position over time. The approach is validated using real-world, publicly available ADS-B air traffic data, and the results are compared to traditional categorization methods from the field of aircraft certification. The results showed that the model could be used to 1) identify and group aircraft sharing the same flight phase, 2) categorize aircraft with a similar general heading or direction, and 3) distinguish between local regional aircraft operations and longer flight operations. It was also shown that, depending on the use case, the model could be extended to identify more granular behaviors by increasing the [Formula: see text] value used to create the model. Overall, the findings demonstrate that leveraging machine learning techniques for aircraft categorization provides an effective, automated, and scalable solution applicable to a wide range of current applications.\",\"PeriodicalId\":36984,\"journal\":{\"name\":\"Journal of Air Transportation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Air Transportation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2514/1.d0398\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Air Transportation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2514/1.d0398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

摘要

建立飞机类别是一种分类技术,应用于各种航空领域,包括设计和开发、认证、持续适航、空中交通管理、监视和安全分析。传统的方法依赖于人工特征工程,这种方法不仅耗费大量人力,而且无法有效捕捉复杂的模式。本文提出了一种使用无监督机器学习聚类的飞机分类方法。所提方法的目的是简单易用,以便跨学科领域使用和理解;可扩展到大量空中交通数据;可适应变化,以考虑到空域环境不断发展的技术和运行性质。该应用基于[公式:见正文]均值算法的改编版,该算法可根据飞机随时间变化的三维位置将飞机分组。该方法利用实际公开的 ADS-B 空中交通数据进行了验证,并将结果与飞机认证领域的传统分类方法进行了比较。结果表明,该模型可用于:1)识别具有相同飞行阶段的飞机并对其进行分组;2)对具有相似航向或方向的飞机进行分类;3)区分本地区域性飞机运行和长距离飞行运行。研究还表明,根据不同的使用情况,可以通过增加用于创建模型的[公式:见正文]值来扩展模型,以识别更细粒度的行为。总之,研究结果表明,利用机器学习技术进行飞机分类提供了一种有效、自动化和可扩展的解决方案,适用于当前的各种应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Aircraft Categorization Approach Using Machine Learning to Analyze Aircraft Behavior
The establishment of aircraft categories is a classification technique employed in a variety of aviation disciplines, including design and development, certification, ongoing airworthiness, air traffic management, surveillance, and safety analysis. Traditional approaches rely on manual feature engineering, which can be labor-intensive and ineffective for capturing complex patterns. In this paper, an approach to aircraft categorization using unsupervised machine learning clustering is proposed. The aim of the proposed approach is to be simple in order to be useful and understandable across disciplinary domains; to be scalable to large volumes of air traffic data; and to be adaptable to changes to account for the evolving technological and operational nature of the airspace environment. The application is based on an adapted version of the [Formula: see text]-means algorithm that can group aircraft into clusters based on 3D position over time. The approach is validated using real-world, publicly available ADS-B air traffic data, and the results are compared to traditional categorization methods from the field of aircraft certification. The results showed that the model could be used to 1) identify and group aircraft sharing the same flight phase, 2) categorize aircraft with a similar general heading or direction, and 3) distinguish between local regional aircraft operations and longer flight operations. It was also shown that, depending on the use case, the model could be extended to identify more granular behaviors by increasing the [Formula: see text] value used to create the model. Overall, the findings demonstrate that leveraging machine learning techniques for aircraft categorization provides an effective, automated, and scalable solution applicable to a wide range of current applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Air Transportation
Journal of Air Transportation Social Sciences-Safety Research
CiteScore
2.80
自引率
0.00%
发文量
16
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信