Gian Luca Eusebi Borzelli, E. Napolitano, A. Carillo, M. Struglia, M. Palma, Roberto Iacono
{"title":"海盆的水文与动态描述:爱奥尼亚海的巴洛克运动实例","authors":"Gian Luca Eusebi Borzelli, E. Napolitano, A. Carillo, M. Struglia, M. Palma, Roberto Iacono","doi":"10.3390/oceans5020023","DOIUrl":null,"url":null,"abstract":"The Ionian Sea is a crucial intersection for various water masses in the Mediterranean. Its hydrography and dynamics play a significant role in the seawater budgets and biogeochemistry of the neighboring sub-basins. Multiple theories have been formulated to gain a better understanding of the Ionian dynamics. These theories primarily attribute the variability of the near-surface Ionian circulation to internal processes. Here, we utilize horizontal currents and temperature–salinity profiles from the Copernicus reanalysis to examine the contribution of baroclinic modes to the variability of the basin horizontal circulation. Our findings demonstrate that, although the basin vertical structure is characterized by three layers, the primary patterns of the Ionian circulation can be attributed to the first baroclinic mode. This mode, along with the barotropic mode, accounts for over 85% of the overall variability in the Ionian circulation, suggesting that only one of the three interfaces separating the different water masses in the basin is dynamically active. We estimate the depth of this interface to be about 490 m. Additionally, our analysis shows that more than 90% of the kinetic energy over the water column is localized above this interface, indicating that the deep layer of the Ionian is dynamically nearly inert.","PeriodicalId":19477,"journal":{"name":"Oceans","volume":"94 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrographic vs. Dynamic Description of a Basin: The Example of Baroclinic Motion in the Ionian Sea\",\"authors\":\"Gian Luca Eusebi Borzelli, E. Napolitano, A. Carillo, M. Struglia, M. Palma, Roberto Iacono\",\"doi\":\"10.3390/oceans5020023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Ionian Sea is a crucial intersection for various water masses in the Mediterranean. Its hydrography and dynamics play a significant role in the seawater budgets and biogeochemistry of the neighboring sub-basins. Multiple theories have been formulated to gain a better understanding of the Ionian dynamics. These theories primarily attribute the variability of the near-surface Ionian circulation to internal processes. Here, we utilize horizontal currents and temperature–salinity profiles from the Copernicus reanalysis to examine the contribution of baroclinic modes to the variability of the basin horizontal circulation. Our findings demonstrate that, although the basin vertical structure is characterized by three layers, the primary patterns of the Ionian circulation can be attributed to the first baroclinic mode. This mode, along with the barotropic mode, accounts for over 85% of the overall variability in the Ionian circulation, suggesting that only one of the three interfaces separating the different water masses in the basin is dynamically active. We estimate the depth of this interface to be about 490 m. Additionally, our analysis shows that more than 90% of the kinetic energy over the water column is localized above this interface, indicating that the deep layer of the Ionian is dynamically nearly inert.\",\"PeriodicalId\":19477,\"journal\":{\"name\":\"Oceans\",\"volume\":\"94 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oceans\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/oceans5020023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oceans","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/oceans5020023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hydrographic vs. Dynamic Description of a Basin: The Example of Baroclinic Motion in the Ionian Sea
The Ionian Sea is a crucial intersection for various water masses in the Mediterranean. Its hydrography and dynamics play a significant role in the seawater budgets and biogeochemistry of the neighboring sub-basins. Multiple theories have been formulated to gain a better understanding of the Ionian dynamics. These theories primarily attribute the variability of the near-surface Ionian circulation to internal processes. Here, we utilize horizontal currents and temperature–salinity profiles from the Copernicus reanalysis to examine the contribution of baroclinic modes to the variability of the basin horizontal circulation. Our findings demonstrate that, although the basin vertical structure is characterized by three layers, the primary patterns of the Ionian circulation can be attributed to the first baroclinic mode. This mode, along with the barotropic mode, accounts for over 85% of the overall variability in the Ionian circulation, suggesting that only one of the three interfaces separating the different water masses in the basin is dynamically active. We estimate the depth of this interface to be about 490 m. Additionally, our analysis shows that more than 90% of the kinetic energy over the water column is localized above this interface, indicating that the deep layer of the Ionian is dynamically nearly inert.