{"title":"电磁学教学的多模式教学法","authors":"Waseem Sheikh","doi":"10.1002/cae.22758","DOIUrl":null,"url":null,"abstract":"<p>Electromagnetics is a core course in the undergraduate electrical engineering curriculum that entails the study of electric and magnetic fields. Students, usually, perceive it as a challenging course since it requires them to build mental models of the spatial and time-varying electric and magnetic fields that cannot be seen by the naked eye. Moreover, the mathematics used in this subject is quite complex and abstract and can further compound the students' difficulties in connecting abstract math with real-life industry applications. To address these challenges, the author designed an undergraduate electromagentics course, which utilized certain pedagogical techniques to enhance the learning experience of the students. These pedagogies include extensive usage of MATLAB simulations, animations, and videos during the course that helps students visualize and conceptualize abstract concepts, usage of a comprehensive course-wide equation sheet, and highlighting the connection of the theory with real-life applications and industry jobs. This paper presents some of the simulations designed by the author as part of this course. Moreover, the equation sheet is also reproduced and access to its <span></span><math>\n <semantics>\n <mrow>\n \n <mi>L</mi>\n <mspace></mspace>\n \n <mrow>\n <mstyle>\n <mrow>\n <mi>A</mi>\n </mrow>\n </mstyle>\n </mrow>\n <mspace></mspace>\n \n <mi>T</mi>\n <mspace></mspace>\n \n <mrow>\n <mi>E</mi>\n </mrow>\n <mspace></mspace>\n \n <mi>X</mi>\n </mrow>\n <annotation> $L\\,{\\scriptstyle A}\\,T\\,E\\,X$</annotation>\n </semantics></math> source is provided for the benefit of other instructors and students. The paper also presents results from the end-of-semester students' survey to measure the efficacy of these pedagogical techniques.</p>","PeriodicalId":50643,"journal":{"name":"Computer Applications in Engineering Education","volume":"32 5","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multimodal pedagogical approach to teaching electromagnetics\",\"authors\":\"Waseem Sheikh\",\"doi\":\"10.1002/cae.22758\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Electromagnetics is a core course in the undergraduate electrical engineering curriculum that entails the study of electric and magnetic fields. Students, usually, perceive it as a challenging course since it requires them to build mental models of the spatial and time-varying electric and magnetic fields that cannot be seen by the naked eye. Moreover, the mathematics used in this subject is quite complex and abstract and can further compound the students' difficulties in connecting abstract math with real-life industry applications. To address these challenges, the author designed an undergraduate electromagentics course, which utilized certain pedagogical techniques to enhance the learning experience of the students. These pedagogies include extensive usage of MATLAB simulations, animations, and videos during the course that helps students visualize and conceptualize abstract concepts, usage of a comprehensive course-wide equation sheet, and highlighting the connection of the theory with real-life applications and industry jobs. This paper presents some of the simulations designed by the author as part of this course. Moreover, the equation sheet is also reproduced and access to its <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mi>L</mi>\\n <mspace></mspace>\\n \\n <mrow>\\n <mstyle>\\n <mrow>\\n <mi>A</mi>\\n </mrow>\\n </mstyle>\\n </mrow>\\n <mspace></mspace>\\n \\n <mi>T</mi>\\n <mspace></mspace>\\n \\n <mrow>\\n <mi>E</mi>\\n </mrow>\\n <mspace></mspace>\\n \\n <mi>X</mi>\\n </mrow>\\n <annotation> $L\\\\,{\\\\scriptstyle A}\\\\,T\\\\,E\\\\,X$</annotation>\\n </semantics></math> source is provided for the benefit of other instructors and students. The paper also presents results from the end-of-semester students' survey to measure the efficacy of these pedagogical techniques.</p>\",\"PeriodicalId\":50643,\"journal\":{\"name\":\"Computer Applications in Engineering Education\",\"volume\":\"32 5\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Applications in Engineering Education\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cae.22758\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Applications in Engineering Education","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cae.22758","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A multimodal pedagogical approach to teaching electromagnetics
Electromagnetics is a core course in the undergraduate electrical engineering curriculum that entails the study of electric and magnetic fields. Students, usually, perceive it as a challenging course since it requires them to build mental models of the spatial and time-varying electric and magnetic fields that cannot be seen by the naked eye. Moreover, the mathematics used in this subject is quite complex and abstract and can further compound the students' difficulties in connecting abstract math with real-life industry applications. To address these challenges, the author designed an undergraduate electromagentics course, which utilized certain pedagogical techniques to enhance the learning experience of the students. These pedagogies include extensive usage of MATLAB simulations, animations, and videos during the course that helps students visualize and conceptualize abstract concepts, usage of a comprehensive course-wide equation sheet, and highlighting the connection of the theory with real-life applications and industry jobs. This paper presents some of the simulations designed by the author as part of this course. Moreover, the equation sheet is also reproduced and access to its source is provided for the benefit of other instructors and students. The paper also presents results from the end-of-semester students' survey to measure the efficacy of these pedagogical techniques.
期刊介绍:
Computer Applications in Engineering Education provides a forum for publishing peer-reviewed timely information on the innovative uses of computers, Internet, and software tools in engineering education. Besides new courses and software tools, the CAE journal covers areas that support the integration of technology-based modules in the engineering curriculum and promotes discussion of the assessment and dissemination issues associated with these new implementation methods.