深化智能微电网管理:基于告警模型提高负荷预测精度的研究

Yuke Wang
{"title":"深化智能微电网管理:基于告警模型提高负荷预测精度的研究","authors":"Yuke Wang","doi":"10.61173/sq6kd003","DOIUrl":null,"url":null,"abstract":"In the context of the “double carbon” strategy and the rapid development of deep learning, it provides new ideas for load forecasting of intelligent microgrids. In this study, we choose the Informer model based on the Transformer framework, which improves the self-attention mechanism and reduces the computational cost, to improve load accuracy and to achieve intelligent management of the microgrid system by accurately forecasting power load data.","PeriodicalId":438278,"journal":{"name":"Science and Technology of Engineering, Chemistry and Environmental Protection","volume":"5 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deepening Intelligent Microgrid Management: A Study on Improving Load Forecasting Accuracy Based on Informer Models\",\"authors\":\"Yuke Wang\",\"doi\":\"10.61173/sq6kd003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the context of the “double carbon” strategy and the rapid development of deep learning, it provides new ideas for load forecasting of intelligent microgrids. In this study, we choose the Informer model based on the Transformer framework, which improves the self-attention mechanism and reduces the computational cost, to improve load accuracy and to achieve intelligent management of the microgrid system by accurately forecasting power load data.\",\"PeriodicalId\":438278,\"journal\":{\"name\":\"Science and Technology of Engineering, Chemistry and Environmental Protection\",\"volume\":\"5 7\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science and Technology of Engineering, Chemistry and Environmental Protection\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.61173/sq6kd003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology of Engineering, Chemistry and Environmental Protection","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.61173/sq6kd003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在 "双碳 "战略和深度学习快速发展的背景下,为智能微电网的负荷预测提供了新思路。在本研究中,我们选择了基于 Transformer 框架的 Informer 模型,该模型改进了自我关注机制,降低了计算成本,通过准确预测电力负荷数据,提高负荷精度,实现微电网系统的智能化管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deepening Intelligent Microgrid Management: A Study on Improving Load Forecasting Accuracy Based on Informer Models
In the context of the “double carbon” strategy and the rapid development of deep learning, it provides new ideas for load forecasting of intelligent microgrids. In this study, we choose the Informer model based on the Transformer framework, which improves the self-attention mechanism and reduces the computational cost, to improve load accuracy and to achieve intelligent management of the microgrid system by accurately forecasting power load data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信