罗森布拉特过程控制的分数随机延迟系统的良好假设性和海尔-乌兰稳定性

IF 3.6 2区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Ghada AlNemer, Mohamed Hosny, R. Udhayakumar, Ahmed M. Elshenhab
{"title":"罗森布拉特过程控制的分数随机延迟系统的良好假设性和海尔-乌兰稳定性","authors":"Ghada AlNemer, Mohamed Hosny, R. Udhayakumar, Ahmed M. Elshenhab","doi":"10.3390/fractalfract8060342","DOIUrl":null,"url":null,"abstract":"Under the effect of the Rosenblatt process, the well-posedness and Hyers–Ulam stability of nonlinear fractional stochastic delay systems are considered. First, depending on fixed-point theory, the existence and uniqueness of solutions are proven. Next, utilizing the delayed Mittag–Leffler matrix functions and Grönwall’s inequality, sufficient criteria for Hyers–Ulam stability are established. Ultimately, an example is presented to demonstrate the effectiveness of the obtained findings.","PeriodicalId":12435,"journal":{"name":"Fractal and Fractional","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Well-Posedness and Hyers–Ulam Stability of Fractional Stochastic Delay Systems Governed by the Rosenblatt Process\",\"authors\":\"Ghada AlNemer, Mohamed Hosny, R. Udhayakumar, Ahmed M. Elshenhab\",\"doi\":\"10.3390/fractalfract8060342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Under the effect of the Rosenblatt process, the well-posedness and Hyers–Ulam stability of nonlinear fractional stochastic delay systems are considered. First, depending on fixed-point theory, the existence and uniqueness of solutions are proven. Next, utilizing the delayed Mittag–Leffler matrix functions and Grönwall’s inequality, sufficient criteria for Hyers–Ulam stability are established. Ultimately, an example is presented to demonstrate the effectiveness of the obtained findings.\",\"PeriodicalId\":12435,\"journal\":{\"name\":\"Fractal and Fractional\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractal and Fractional\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3390/fractalfract8060342\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractal and Fractional","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3390/fractalfract8060342","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

在罗森布拉特过程的作用下,研究了非线性分数随机延迟系统的好求性和海尔-乌兰稳定性。首先,根据定点理论证明了解的存在性和唯一性。接着,利用延迟 Mittag-Leffler 矩阵函数和 Grönwall 不等式,建立了海尔-乌兰稳定性的充分标准。最后,介绍了一个实例来证明所获结论的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Well-Posedness and Hyers–Ulam Stability of Fractional Stochastic Delay Systems Governed by the Rosenblatt Process
Under the effect of the Rosenblatt process, the well-posedness and Hyers–Ulam stability of nonlinear fractional stochastic delay systems are considered. First, depending on fixed-point theory, the existence and uniqueness of solutions are proven. Next, utilizing the delayed Mittag–Leffler matrix functions and Grönwall’s inequality, sufficient criteria for Hyers–Ulam stability are established. Ultimately, an example is presented to demonstrate the effectiveness of the obtained findings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fractal and Fractional
Fractal and Fractional MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
CiteScore
4.60
自引率
18.50%
发文量
632
审稿时长
11 weeks
期刊介绍: Fractal and Fractional is an international, scientific, peer-reviewed, open access journal that focuses on the study of fractals and fractional calculus, as well as their applications across various fields of science and engineering. It is published monthly online by MDPI and offers a cutting-edge platform for research papers, reviews, and short notes in this specialized area. The journal, identified by ISSN 2504-3110, encourages scientists to submit their experimental and theoretical findings in great detail, with no limits on the length of manuscripts to ensure reproducibility. A key objective is to facilitate the publication of detailed research, including experimental procedures and calculations. "Fractal and Fractional" also stands out for its unique offerings: it warmly welcomes manuscripts related to research proposals and innovative ideas, and allows for the deposition of electronic files containing detailed calculations and experimental protocols as supplementary material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信