施瓦兹柴尔德时空中狄拉克算子的伪超对称方法

Ö. Yeşiltaş
{"title":"施瓦兹柴尔德时空中狄拉克算子的伪超对称方法","authors":"Ö. Yeşiltaş","doi":"10.1088/1361-6382/ad550c","DOIUrl":null,"url":null,"abstract":"\n We have discussed the Dirac equation in the Schwarzschild spacetime via pseudo-supersymmetric quantum mechanics and obtained the partner Hamiltonain of the initial Hamiltonian operator. We have shown that partner metric tensors of the corresponding Hamiltonians can be obtained through the intertwining relations of pseudo-supersymmetric approaches. Moreover, approximate solutions of the radial part are obtained within N = 2 supersymmetry and radial potential graphs are given, then, quasinormal modes are discussed in the limit of r → ±∞.","PeriodicalId":505126,"journal":{"name":"Classical and Quantum Gravity","volume":"16 14","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pseudo-supersymmetric approach to the Dirac operator in the Schwarzschild spacetime\",\"authors\":\"Ö. Yeşiltaş\",\"doi\":\"10.1088/1361-6382/ad550c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n We have discussed the Dirac equation in the Schwarzschild spacetime via pseudo-supersymmetric quantum mechanics and obtained the partner Hamiltonain of the initial Hamiltonian operator. We have shown that partner metric tensors of the corresponding Hamiltonians can be obtained through the intertwining relations of pseudo-supersymmetric approaches. Moreover, approximate solutions of the radial part are obtained within N = 2 supersymmetry and radial potential graphs are given, then, quasinormal modes are discussed in the limit of r → ±∞.\",\"PeriodicalId\":505126,\"journal\":{\"name\":\"Classical and Quantum Gravity\",\"volume\":\"16 14\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Classical and Quantum Gravity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6382/ad550c\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Classical and Quantum Gravity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6382/ad550c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们通过伪超对称量子力学讨论了施瓦兹柴尔德时空中的狄拉克方程,并得到了初始哈密顿算子的伙伴哈密顿域。我们已经证明,通过伪超对称方法的交织关系,可以得到相应哈密顿的伙伴度量张量。此外,我们还在 N = 2 超对称范围内得到了径向部分的近似解,并给出了径向势图,然后讨论了 r → ±∞ 极限下的准正常模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pseudo-supersymmetric approach to the Dirac operator in the Schwarzschild spacetime
We have discussed the Dirac equation in the Schwarzschild spacetime via pseudo-supersymmetric quantum mechanics and obtained the partner Hamiltonain of the initial Hamiltonian operator. We have shown that partner metric tensors of the corresponding Hamiltonians can be obtained through the intertwining relations of pseudo-supersymmetric approaches. Moreover, approximate solutions of the radial part are obtained within N = 2 supersymmetry and radial potential graphs are given, then, quasinormal modes are discussed in the limit of r → ±∞.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信