{"title":"EPTDMS:用于云辅助电子医疗系统的高效且保护隐私的顶k疾病匹配方案","authors":"ou ruan, xin jiang","doi":"10.1117/12.3031898","DOIUrl":null,"url":null,"abstract":"In modern e-healthcare systems, healthcare providers usually store users' data in cloud servers. Users wish to obtain relevant diagnostic files through data generated by body sensors. We propose an efficient and privacy-preserving Top- k disease matching scheme (called EPTDMS). EPTDMS uses Density-Sensitive Hashing (DSH) to implement fuzzy search in stage one, employs the cosine value to sort the relevant result, and obtains patient diagnostic files. Improvements are made to address the problems of low matching efficiency, high computational overhead, and high communication volume of most privacy-preserving matching schemes. This scheme achieves disease matching with low computation and communication overhead and reduces the average query time.","PeriodicalId":198425,"journal":{"name":"Other Conferences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EPTDMS: efficient and privacy-preserving top-k disease matching scheme for cloud-assisted e-healthcare system\",\"authors\":\"ou ruan, xin jiang\",\"doi\":\"10.1117/12.3031898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In modern e-healthcare systems, healthcare providers usually store users' data in cloud servers. Users wish to obtain relevant diagnostic files through data generated by body sensors. We propose an efficient and privacy-preserving Top- k disease matching scheme (called EPTDMS). EPTDMS uses Density-Sensitive Hashing (DSH) to implement fuzzy search in stage one, employs the cosine value to sort the relevant result, and obtains patient diagnostic files. Improvements are made to address the problems of low matching efficiency, high computational overhead, and high communication volume of most privacy-preserving matching schemes. This scheme achieves disease matching with low computation and communication overhead and reduces the average query time.\",\"PeriodicalId\":198425,\"journal\":{\"name\":\"Other Conferences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Other Conferences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.3031898\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Other Conferences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3031898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
在现代电子医疗系统中,医疗服务提供商通常将用户数据存储在云服务器中。用户希望通过身体传感器生成的数据获得相关诊断文件。我们提出了一种高效且保护隐私的 Top- k 疾病匹配方案(称为 EPTDMS)。EPTDMS 在第一阶段使用密度敏感散列(DSH)实现模糊搜索,利用余弦值对相关结果进行排序,并获取患者诊断文件。针对大多数隐私保护匹配方案存在的匹配效率低、计算开销大、通信量大等问题进行了改进。该方案以较低的计算和通信开销实现了疾病匹配,并缩短了平均查询时间。
EPTDMS: efficient and privacy-preserving top-k disease matching scheme for cloud-assisted e-healthcare system
In modern e-healthcare systems, healthcare providers usually store users' data in cloud servers. Users wish to obtain relevant diagnostic files through data generated by body sensors. We propose an efficient and privacy-preserving Top- k disease matching scheme (called EPTDMS). EPTDMS uses Density-Sensitive Hashing (DSH) to implement fuzzy search in stage one, employs the cosine value to sort the relevant result, and obtains patient diagnostic files. Improvements are made to address the problems of low matching efficiency, high computational overhead, and high communication volume of most privacy-preserving matching schemes. This scheme achieves disease matching with low computation and communication overhead and reduces the average query time.