Owen O'Malley, Svetlana Avramov-Zamurovic, Nathaniel Ferlic, Matthew Kalensky, K. Judd, Carlos Pirela, Thomas J. Kelly
{"title":"通过瑞利-贝纳德水下对流传播的激光的相位检索方法比较","authors":"Owen O'Malley, Svetlana Avramov-Zamurovic, Nathaniel Ferlic, Matthew Kalensky, K. Judd, Carlos Pirela, Thomas J. Kelly","doi":"10.1117/12.3013458","DOIUrl":null,"url":null,"abstract":"Accurate measurement of laser light phase after propagation through underwater optical turbulence is crucial for defense and commercial applications like underwater communications and sensing. Traditional phase-measuring methods, like Shack-Hartmann wavefront sensors, have limited effectiveness in strong optical turbulence. The Gerchberg-Saxton (GS) method utilizes synchronized intensity images in the image and Fourier planes and retrieves the phase through an iterative algorithm. We evaluate the Gerchberg-Saxton algorithm's accuracy for laser light propagation through simulated Kolmogorov turbulence and experimentally generated Rayleigh-Bénard (RB) natural convection. The results of the phase retrieved from the experimental data recorded in pupil and focal planes are compared with the phase measurements from a Shack-Hartmann sensor. We tested the efficacy of the Gerchberg-Saxton algorithm to estimate the phase of laser light upon propagation through underwater optical turbulence.","PeriodicalId":178341,"journal":{"name":"Defense + Commercial Sensing","volume":"20 20","pages":"130610H - 130610H-11"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison between phase retrieval methods for laser light propagated through Rayleigh-Benard underwater convection\",\"authors\":\"Owen O'Malley, Svetlana Avramov-Zamurovic, Nathaniel Ferlic, Matthew Kalensky, K. Judd, Carlos Pirela, Thomas J. Kelly\",\"doi\":\"10.1117/12.3013458\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate measurement of laser light phase after propagation through underwater optical turbulence is crucial for defense and commercial applications like underwater communications and sensing. Traditional phase-measuring methods, like Shack-Hartmann wavefront sensors, have limited effectiveness in strong optical turbulence. The Gerchberg-Saxton (GS) method utilizes synchronized intensity images in the image and Fourier planes and retrieves the phase through an iterative algorithm. We evaluate the Gerchberg-Saxton algorithm's accuracy for laser light propagation through simulated Kolmogorov turbulence and experimentally generated Rayleigh-Bénard (RB) natural convection. The results of the phase retrieved from the experimental data recorded in pupil and focal planes are compared with the phase measurements from a Shack-Hartmann sensor. We tested the efficacy of the Gerchberg-Saxton algorithm to estimate the phase of laser light upon propagation through underwater optical turbulence.\",\"PeriodicalId\":178341,\"journal\":{\"name\":\"Defense + Commercial Sensing\",\"volume\":\"20 20\",\"pages\":\"130610H - 130610H-11\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Defense + Commercial Sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.3013458\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Defense + Commercial Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3013458","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparison between phase retrieval methods for laser light propagated through Rayleigh-Benard underwater convection
Accurate measurement of laser light phase after propagation through underwater optical turbulence is crucial for defense and commercial applications like underwater communications and sensing. Traditional phase-measuring methods, like Shack-Hartmann wavefront sensors, have limited effectiveness in strong optical turbulence. The Gerchberg-Saxton (GS) method utilizes synchronized intensity images in the image and Fourier planes and retrieves the phase through an iterative algorithm. We evaluate the Gerchberg-Saxton algorithm's accuracy for laser light propagation through simulated Kolmogorov turbulence and experimentally generated Rayleigh-Bénard (RB) natural convection. The results of the phase retrieved from the experimental data recorded in pupil and focal planes are compared with the phase measurements from a Shack-Hartmann sensor. We tested the efficacy of the Gerchberg-Saxton algorithm to estimate the phase of laser light upon propagation through underwater optical turbulence.