Annamalai Nataraj, D. Mondhe, Vishwananth Srikantaiah, F. Ishtiaq
{"title":"元基因组分析揭示了污水处理对印度班加罗尔微生物组和抗生素耐药性组的不同影响","authors":"Annamalai Nataraj, D. Mondhe, Vishwananth Srikantaiah, F. Ishtiaq","doi":"10.2166/wrd.2024.032","DOIUrl":null,"url":null,"abstract":"\n \n Climate change and health are closely linked to urban wastewater used for irrigation. Sewage treatment plants (STPs) provide ideal environments and niche availability for the transmission of antibiotic resistance genes (ARGs) among pathogenic and non-pathogenic bacteria. In this study, we examined the differential effect of sewage processing methods from the inlet to the outlet on the microbial diversity and antibiotic resistomes of 26 STPs in the urban sewage network of Bengaluru, India. We screened 478 ARGs and found 273 ARGs in wastewater, including clinically relevant genes such as CTX-M, qnr, sul-1, and NDM-1, which confer resistance to six major classes of antibiotics. The richness of ARGs was higher in sewage inlets compared with outlets. We observed a downward shift in drug classes from inlet to outlet samples, except for aminoglycosides, beta-lactams, MLSB, and tetracycline. Inlet samples exhibited more complex correlations between ARGs and bacteria compared with outlet samples. Our findings serve as a baseline study that could aid in the quantification of genes from both culturable and non-culturable taxa and will assist in the development of policies and strategies to address water quality issues associated with the use of recycled water.","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"1 4","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metagenomic analysis reveals differential effects of sewage treatment on the microbiome and antibiotic resistome in Bengaluru, India\",\"authors\":\"Annamalai Nataraj, D. Mondhe, Vishwananth Srikantaiah, F. Ishtiaq\",\"doi\":\"10.2166/wrd.2024.032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n Climate change and health are closely linked to urban wastewater used for irrigation. Sewage treatment plants (STPs) provide ideal environments and niche availability for the transmission of antibiotic resistance genes (ARGs) among pathogenic and non-pathogenic bacteria. In this study, we examined the differential effect of sewage processing methods from the inlet to the outlet on the microbial diversity and antibiotic resistomes of 26 STPs in the urban sewage network of Bengaluru, India. We screened 478 ARGs and found 273 ARGs in wastewater, including clinically relevant genes such as CTX-M, qnr, sul-1, and NDM-1, which confer resistance to six major classes of antibiotics. The richness of ARGs was higher in sewage inlets compared with outlets. We observed a downward shift in drug classes from inlet to outlet samples, except for aminoglycosides, beta-lactams, MLSB, and tetracycline. Inlet samples exhibited more complex correlations between ARGs and bacteria compared with outlet samples. Our findings serve as a baseline study that could aid in the quantification of genes from both culturable and non-culturable taxa and will assist in the development of policies and strategies to address water quality issues associated with the use of recycled water.\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":\"1 4\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.2166/wrd.2024.032\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/wrd.2024.032","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Metagenomic analysis reveals differential effects of sewage treatment on the microbiome and antibiotic resistome in Bengaluru, India
Climate change and health are closely linked to urban wastewater used for irrigation. Sewage treatment plants (STPs) provide ideal environments and niche availability for the transmission of antibiotic resistance genes (ARGs) among pathogenic and non-pathogenic bacteria. In this study, we examined the differential effect of sewage processing methods from the inlet to the outlet on the microbial diversity and antibiotic resistomes of 26 STPs in the urban sewage network of Bengaluru, India. We screened 478 ARGs and found 273 ARGs in wastewater, including clinically relevant genes such as CTX-M, qnr, sul-1, and NDM-1, which confer resistance to six major classes of antibiotics. The richness of ARGs was higher in sewage inlets compared with outlets. We observed a downward shift in drug classes from inlet to outlet samples, except for aminoglycosides, beta-lactams, MLSB, and tetracycline. Inlet samples exhibited more complex correlations between ARGs and bacteria compared with outlet samples. Our findings serve as a baseline study that could aid in the quantification of genes from both culturable and non-culturable taxa and will assist in the development of policies and strategies to address water quality issues associated with the use of recycled water.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.