Anup Kumar, Manish K. Verma, Biswajeet Jena, D. Tiwary, N. Singh, Kamdeo D. Mandal
{"title":"通过化学途径合成的多功能 Bi12GeO20 化合物的研究","authors":"Anup Kumar, Manish K. Verma, Biswajeet Jena, D. Tiwary, N. Singh, Kamdeo D. Mandal","doi":"10.1117/12.3012321","DOIUrl":null,"url":null,"abstract":"Increasing water pollution poses a serious threat to both humankind and animals in the current situation. Low cost optical especially photocatalytic material is of utmost relevance to improve situation and meet the global energy demand with little environmental damage. The aim of this study is to develop low-cost low temperature reproducible method to synthesize multifunctional material suitable for degradation of a very dangerous water contaminant dye under visible light exposure. A semiwet chemical route was used to synthesize a multifunctional Bi12GeO20 compound suitable for photocatalytic activity for the degradation of Rhodamine B (RhB) dye under visible light exposure. Bi12GeO20 (BGO) ceramic with polycrystalline structure was prepared successfully e using a low temperature chemical process. X-ray powder diffraction reveals that single-phase BGO ceramic was formed. Nanosized BGO ceramic particles that had been stabilized, XRD and TEM to showed particle sizes in the 60–10 nm range. Due to the favorable band gap (2.72 eV) and the sillenite type Bi12GeO20 exhibits strong photocatalytic activity for the degradation of Rhodamine B (RhB) dye under visible light exposure.","PeriodicalId":178341,"journal":{"name":"Defense + Commercial Sensing","volume":"72 3","pages":"1305904 - 1305904-9"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Studies of multifunctional Bi12GeO20 compound synthesized by chemical route\",\"authors\":\"Anup Kumar, Manish K. Verma, Biswajeet Jena, D. Tiwary, N. Singh, Kamdeo D. Mandal\",\"doi\":\"10.1117/12.3012321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Increasing water pollution poses a serious threat to both humankind and animals in the current situation. Low cost optical especially photocatalytic material is of utmost relevance to improve situation and meet the global energy demand with little environmental damage. The aim of this study is to develop low-cost low temperature reproducible method to synthesize multifunctional material suitable for degradation of a very dangerous water contaminant dye under visible light exposure. A semiwet chemical route was used to synthesize a multifunctional Bi12GeO20 compound suitable for photocatalytic activity for the degradation of Rhodamine B (RhB) dye under visible light exposure. Bi12GeO20 (BGO) ceramic with polycrystalline structure was prepared successfully e using a low temperature chemical process. X-ray powder diffraction reveals that single-phase BGO ceramic was formed. Nanosized BGO ceramic particles that had been stabilized, XRD and TEM to showed particle sizes in the 60–10 nm range. Due to the favorable band gap (2.72 eV) and the sillenite type Bi12GeO20 exhibits strong photocatalytic activity for the degradation of Rhodamine B (RhB) dye under visible light exposure.\",\"PeriodicalId\":178341,\"journal\":{\"name\":\"Defense + Commercial Sensing\",\"volume\":\"72 3\",\"pages\":\"1305904 - 1305904-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Defense + Commercial Sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.3012321\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Defense + Commercial Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3012321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Studies of multifunctional Bi12GeO20 compound synthesized by chemical route
Increasing water pollution poses a serious threat to both humankind and animals in the current situation. Low cost optical especially photocatalytic material is of utmost relevance to improve situation and meet the global energy demand with little environmental damage. The aim of this study is to develop low-cost low temperature reproducible method to synthesize multifunctional material suitable for degradation of a very dangerous water contaminant dye under visible light exposure. A semiwet chemical route was used to synthesize a multifunctional Bi12GeO20 compound suitable for photocatalytic activity for the degradation of Rhodamine B (RhB) dye under visible light exposure. Bi12GeO20 (BGO) ceramic with polycrystalline structure was prepared successfully e using a low temperature chemical process. X-ray powder diffraction reveals that single-phase BGO ceramic was formed. Nanosized BGO ceramic particles that had been stabilized, XRD and TEM to showed particle sizes in the 60–10 nm range. Due to the favorable band gap (2.72 eV) and the sillenite type Bi12GeO20 exhibits strong photocatalytic activity for the degradation of Rhodamine B (RhB) dye under visible light exposure.