掺锶铋硼酸盐玻璃的制备与表征

IF 1 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
Y. Hordieiev, A. Zaichuk
{"title":"掺锶铋硼酸盐玻璃的制备与表征","authors":"Y. Hordieiev, A. Zaichuk","doi":"10.15251/djnb.2024.192.773","DOIUrl":null,"url":null,"abstract":"Employing the melt quenching method, new bismuth borate glass compositions denoted as (40+x)Bi2O3–(60-x-y)B2O3–ySrO, with x and y ranging between 0 to 20 mol%, were synthesized. The X-ray Diffraction analyses confirmed the amorphous nature of all glass samples, indicating the absence of long-range order typically seen in crystalline materials. Concurrently, the Fourier-transform Infrared Spectroscopy examinations unveiled the existence of fundamental structural units within the glasses, including BO3 and BO4 trigonal and tetrahedral units, as well as BiO3 and BiO6 polyhedra, suggesting a complex network structure. Differential Thermal Analysis (DTA) and dilatometry assessed the glasses' thermal properties. DTA demonstrated the glasses' high thermal stability, with a stability value of up to 106°C, noting that stability improves with more SrO. Dilatometry analyses revealed these glasses exhibit a high thermal expansion coefficient, ranging from 8.69 to 10.7 ppm/°C, alongside relatively low glass transition temperatures between 362 and 432°C and dilatometric softening temperatures spanning from 380 to 447°C. Density measurements were conducted, followed by molar volume and oxygen packing density calculations, to glean further insights into the samples. Compared to other heavy-metal oxide glasses, the glasses examined in this study exhibited notably high-density values, ranging between 6.279 and 7.476 g/cm3 .","PeriodicalId":11233,"journal":{"name":"Digest Journal of Nanomaterials and Biostructures","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation and characterization of strontium-doped bismuth borate glasses\",\"authors\":\"Y. Hordieiev, A. Zaichuk\",\"doi\":\"10.15251/djnb.2024.192.773\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Employing the melt quenching method, new bismuth borate glass compositions denoted as (40+x)Bi2O3–(60-x-y)B2O3–ySrO, with x and y ranging between 0 to 20 mol%, were synthesized. The X-ray Diffraction analyses confirmed the amorphous nature of all glass samples, indicating the absence of long-range order typically seen in crystalline materials. Concurrently, the Fourier-transform Infrared Spectroscopy examinations unveiled the existence of fundamental structural units within the glasses, including BO3 and BO4 trigonal and tetrahedral units, as well as BiO3 and BiO6 polyhedra, suggesting a complex network structure. Differential Thermal Analysis (DTA) and dilatometry assessed the glasses' thermal properties. DTA demonstrated the glasses' high thermal stability, with a stability value of up to 106°C, noting that stability improves with more SrO. Dilatometry analyses revealed these glasses exhibit a high thermal expansion coefficient, ranging from 8.69 to 10.7 ppm/°C, alongside relatively low glass transition temperatures between 362 and 432°C and dilatometric softening temperatures spanning from 380 to 447°C. Density measurements were conducted, followed by molar volume and oxygen packing density calculations, to glean further insights into the samples. Compared to other heavy-metal oxide glasses, the glasses examined in this study exhibited notably high-density values, ranging between 6.279 and 7.476 g/cm3 .\",\"PeriodicalId\":11233,\"journal\":{\"name\":\"Digest Journal of Nanomaterials and Biostructures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digest Journal of Nanomaterials and Biostructures\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.15251/djnb.2024.192.773\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digest Journal of Nanomaterials and Biostructures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.15251/djnb.2024.192.773","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

利用熔体淬火法,合成了新的硼酸铋玻璃成分,即 (40+x)Bi2O3-(60-x-y)B2O3-ySrO (x 和 y 在 0 到 20 摩尔% 之间)。X 射线衍射分析证实了所有玻璃样品的无定形性质,表明它们不存在晶体材料中常见的长程有序性。同时,傅立叶变换红外光谱分析揭示了玻璃中基本结构单元的存在,包括 BO3 和 BO4 三面体和四面体单元,以及 BiO3 和 BiO6 多面体,这表明玻璃具有复杂的网络结构。差热分析(DTA)和扩张仪评估了玻璃的热性能。差热分析表明玻璃具有很高的热稳定性,稳定值高达 106°C,而且随着氧化锰的增加,稳定性也会提高。稀释分析表明,这些玻璃具有较高的热膨胀系数(8.69 至 10.7 ppm/°C),玻璃转化温度相对较低,在 362 至 432°C 之间,稀释软化温度在 380 至 447°C 之间。通过密度测定以及摩尔体积和氧堆积密度计算,对样品有了进一步的了解。与其他重金属氧化物玻璃相比,本研究中的玻璃具有明显的高密度值,介于 6.279 和 7.476 g/cm3 之间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Preparation and characterization of strontium-doped bismuth borate glasses
Employing the melt quenching method, new bismuth borate glass compositions denoted as (40+x)Bi2O3–(60-x-y)B2O3–ySrO, with x and y ranging between 0 to 20 mol%, were synthesized. The X-ray Diffraction analyses confirmed the amorphous nature of all glass samples, indicating the absence of long-range order typically seen in crystalline materials. Concurrently, the Fourier-transform Infrared Spectroscopy examinations unveiled the existence of fundamental structural units within the glasses, including BO3 and BO4 trigonal and tetrahedral units, as well as BiO3 and BiO6 polyhedra, suggesting a complex network structure. Differential Thermal Analysis (DTA) and dilatometry assessed the glasses' thermal properties. DTA demonstrated the glasses' high thermal stability, with a stability value of up to 106°C, noting that stability improves with more SrO. Dilatometry analyses revealed these glasses exhibit a high thermal expansion coefficient, ranging from 8.69 to 10.7 ppm/°C, alongside relatively low glass transition temperatures between 362 and 432°C and dilatometric softening temperatures spanning from 380 to 447°C. Density measurements were conducted, followed by molar volume and oxygen packing density calculations, to glean further insights into the samples. Compared to other heavy-metal oxide glasses, the glasses examined in this study exhibited notably high-density values, ranging between 6.279 and 7.476 g/cm3 .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Digest Journal of Nanomaterials and Biostructures
Digest Journal of Nanomaterials and Biostructures 工程技术-材料科学:综合
CiteScore
1.50
自引率
22.20%
发文量
116
审稿时长
4.3 months
期刊介绍: Under the aegis of the Academy of Romanian Scientists Edited by: -Virtual Institute of Physics operated by Virtual Company of Physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信