关于 "从周期性 Temperley-Lieb 对象中的特征值特性看 Potts 和 O(N) 模型的临界点 "的评论

Yi Yang, Shuigeng Zhou
{"title":"关于 \"从周期性 Temperley-Lieb 对象中的特征值特性看 Potts 和 O(N) 模型的临界点 \"的评论","authors":"Yi Yang, Shuigeng Zhou","doi":"10.1088/1751-8121/ad4d2c","DOIUrl":null,"url":null,"abstract":"We present an algorithm to compute the exact critical probability h(n) for an n×∞ helical square lattice with random and independent site occupancy. The algorithm has time complexity O(n2cn) and space complexity O(cn) with c = 2.7459... and allows us to compute h(n) up to n = 24. Since the extrapolation result of h(n) is inconsistent with the current best estimation of pc , we also compute and extend the exact critical probability pc(n) for an n×∞ cylindrical square lattice to n = 24. Our calculation shows that the current best result of pc=0.59274605079210(2) by Jacobsen (2015 J. Phys. A: Math. Theor. 48 454003) is incorrect and the corrected value should be 0.5927460507896(1) .","PeriodicalId":502730,"journal":{"name":"Journal of Physics A: Mathematical and Theoretical","volume":"26 2‐3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comment on ‘Critical points of Potts and O(N) models from eigenvalue identities in periodic Temperley–Lieb algebras’\",\"authors\":\"Yi Yang, Shuigeng Zhou\",\"doi\":\"10.1088/1751-8121/ad4d2c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an algorithm to compute the exact critical probability h(n) for an n×∞ helical square lattice with random and independent site occupancy. The algorithm has time complexity O(n2cn) and space complexity O(cn) with c = 2.7459... and allows us to compute h(n) up to n = 24. Since the extrapolation result of h(n) is inconsistent with the current best estimation of pc , we also compute and extend the exact critical probability pc(n) for an n×∞ cylindrical square lattice to n = 24. Our calculation shows that the current best result of pc=0.59274605079210(2) by Jacobsen (2015 J. Phys. A: Math. Theor. 48 454003) is incorrect and the corrected value should be 0.5927460507896(1) .\",\"PeriodicalId\":502730,\"journal\":{\"name\":\"Journal of Physics A: Mathematical and Theoretical\",\"volume\":\"26 2‐3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics A: Mathematical and Theoretical\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1751-8121/ad4d2c\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A: Mathematical and Theoretical","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1751-8121/ad4d2c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种算法,用于计算 n×∞ 螺旋方阵的精确临界概率 h(n),该方阵具有随机且独立的位点占位。该算法的时间复杂度为 O(n2cn),空间复杂度为 O(cn)(c = 2.7459......),可计算 h(n) 至 n = 24。由于 h(n) 的外推结果与当前 pc 的最佳估计值不一致,我们还计算并扩展了 n×∞ 圆柱方阵的精确临界概率 pc(n) 到 n = 24。我们的计算表明,雅各布森(2015 J. Phys. A: Math. Theor. 48 454003)的当前最佳结果 pc=0.59274605079210(2)是不正确的,修正值应该是 0.5927460507896(1)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comment on ‘Critical points of Potts and O(N) models from eigenvalue identities in periodic Temperley–Lieb algebras’
We present an algorithm to compute the exact critical probability h(n) for an n×∞ helical square lattice with random and independent site occupancy. The algorithm has time complexity O(n2cn) and space complexity O(cn) with c = 2.7459... and allows us to compute h(n) up to n = 24. Since the extrapolation result of h(n) is inconsistent with the current best estimation of pc , we also compute and extend the exact critical probability pc(n) for an n×∞ cylindrical square lattice to n = 24. Our calculation shows that the current best result of pc=0.59274605079210(2) by Jacobsen (2015 J. Phys. A: Math. Theor. 48 454003) is incorrect and the corrected value should be 0.5927460507896(1) .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信