{"title":"关于 \"从周期性 Temperley-Lieb 对象中的特征值特性看 Potts 和 O(N) 模型的临界点 \"的评论","authors":"Yi Yang, Shuigeng Zhou","doi":"10.1088/1751-8121/ad4d2c","DOIUrl":null,"url":null,"abstract":"We present an algorithm to compute the exact critical probability h(n) for an n×∞ helical square lattice with random and independent site occupancy. The algorithm has time complexity O(n2cn) and space complexity O(cn) with c = 2.7459... and allows us to compute h(n) up to n = 24. Since the extrapolation result of h(n) is inconsistent with the current best estimation of pc , we also compute and extend the exact critical probability pc(n) for an n×∞ cylindrical square lattice to n = 24. Our calculation shows that the current best result of pc=0.59274605079210(2) by Jacobsen (2015 J. Phys. A: Math. Theor. 48 454003) is incorrect and the corrected value should be 0.5927460507896(1) .","PeriodicalId":502730,"journal":{"name":"Journal of Physics A: Mathematical and Theoretical","volume":"26 2‐3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comment on ‘Critical points of Potts and O(N) models from eigenvalue identities in periodic Temperley–Lieb algebras’\",\"authors\":\"Yi Yang, Shuigeng Zhou\",\"doi\":\"10.1088/1751-8121/ad4d2c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an algorithm to compute the exact critical probability h(n) for an n×∞ helical square lattice with random and independent site occupancy. The algorithm has time complexity O(n2cn) and space complexity O(cn) with c = 2.7459... and allows us to compute h(n) up to n = 24. Since the extrapolation result of h(n) is inconsistent with the current best estimation of pc , we also compute and extend the exact critical probability pc(n) for an n×∞ cylindrical square lattice to n = 24. Our calculation shows that the current best result of pc=0.59274605079210(2) by Jacobsen (2015 J. Phys. A: Math. Theor. 48 454003) is incorrect and the corrected value should be 0.5927460507896(1) .\",\"PeriodicalId\":502730,\"journal\":{\"name\":\"Journal of Physics A: Mathematical and Theoretical\",\"volume\":\"26 2‐3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics A: Mathematical and Theoretical\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1751-8121/ad4d2c\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A: Mathematical and Theoretical","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1751-8121/ad4d2c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们提出了一种算法,用于计算 n×∞ 螺旋方阵的精确临界概率 h(n),该方阵具有随机且独立的位点占位。该算法的时间复杂度为 O(n2cn),空间复杂度为 O(cn)(c = 2.7459......),可计算 h(n) 至 n = 24。由于 h(n) 的外推结果与当前 pc 的最佳估计值不一致,我们还计算并扩展了 n×∞ 圆柱方阵的精确临界概率 pc(n) 到 n = 24。我们的计算表明,雅各布森(2015 J. Phys. A: Math. Theor. 48 454003)的当前最佳结果 pc=0.59274605079210(2)是不正确的,修正值应该是 0.5927460507896(1)。
Comment on ‘Critical points of Potts and O(N) models from eigenvalue identities in periodic Temperley–Lieb algebras’
We present an algorithm to compute the exact critical probability h(n) for an n×∞ helical square lattice with random and independent site occupancy. The algorithm has time complexity O(n2cn) and space complexity O(cn) with c = 2.7459... and allows us to compute h(n) up to n = 24. Since the extrapolation result of h(n) is inconsistent with the current best estimation of pc , we also compute and extend the exact critical probability pc(n) for an n×∞ cylindrical square lattice to n = 24. Our calculation shows that the current best result of pc=0.59274605079210(2) by Jacobsen (2015 J. Phys. A: Math. Theor. 48 454003) is incorrect and the corrected value should be 0.5927460507896(1) .