对流流体的动力学和混沌学

Siyu Guo, Albert C. J. Luo
{"title":"对流流体的动力学和混沌学","authors":"Siyu Guo, Albert C. J. Luo","doi":"10.1142/s0218127424300155","DOIUrl":null,"url":null,"abstract":"In this paper, a mathematical model of fluid flows in a convective thermal system is developed, and a five-dimensional dynamical system is developed for the investigation of the convective fluid dynamics. The analytical solutions of periodic motions to chaos of the convective fluid flows are developed for steady-state vortex flows, and the corresponding stability and bifurcations of periodic motions in the five-dimensional dynamical system are studied. The harmonic frequency-amplitude characteristics for periodic flows are obtained, which provide energy distribution in the parameter space. Analytical homoclinic orbits for the convective fluid flow systems are developed for the asymptotic convection through the infinite-many homoclinic orbits in the five-dimensional dynamical system. The dynamics of fluid flows in the convective thermal systems are revealed, and one can use such methodology to predict atmospheric and oceanic phenomena through thermal convections.","PeriodicalId":506426,"journal":{"name":"International Journal of Bifurcation and Chaos","volume":"196 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamics and Chaos of Convective Fluid Flow\",\"authors\":\"Siyu Guo, Albert C. J. Luo\",\"doi\":\"10.1142/s0218127424300155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a mathematical model of fluid flows in a convective thermal system is developed, and a five-dimensional dynamical system is developed for the investigation of the convective fluid dynamics. The analytical solutions of periodic motions to chaos of the convective fluid flows are developed for steady-state vortex flows, and the corresponding stability and bifurcations of periodic motions in the five-dimensional dynamical system are studied. The harmonic frequency-amplitude characteristics for periodic flows are obtained, which provide energy distribution in the parameter space. Analytical homoclinic orbits for the convective fluid flow systems are developed for the asymptotic convection through the infinite-many homoclinic orbits in the five-dimensional dynamical system. The dynamics of fluid flows in the convective thermal systems are revealed, and one can use such methodology to predict atmospheric and oceanic phenomena through thermal convections.\",\"PeriodicalId\":506426,\"journal\":{\"name\":\"International Journal of Bifurcation and Chaos\",\"volume\":\"196 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Bifurcation and Chaos\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218127424300155\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bifurcation and Chaos","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218127424300155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文建立了对流热系统中流体流动的数学模型,并为研究对流流体动力学建立了五维动力学系统。针对稳态涡流,建立了对流流体流动从周期运动到混沌的解析解,并研究了五维动力学系统中周期运动的相应稳定性和分岔。获得了周期性流动的谐波频率-振幅特性,从而提供了参数空间的能量分布。通过五维动力系统中的无限多同轨道,为对流流体流动系统的渐近对流建立了分析同轨道。揭示了对流热系统中的流体流动动力学,人们可以利用这种方法预测通过热对流产生的大气和海洋现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamics and Chaos of Convective Fluid Flow
In this paper, a mathematical model of fluid flows in a convective thermal system is developed, and a five-dimensional dynamical system is developed for the investigation of the convective fluid dynamics. The analytical solutions of periodic motions to chaos of the convective fluid flows are developed for steady-state vortex flows, and the corresponding stability and bifurcations of periodic motions in the five-dimensional dynamical system are studied. The harmonic frequency-amplitude characteristics for periodic flows are obtained, which provide energy distribution in the parameter space. Analytical homoclinic orbits for the convective fluid flow systems are developed for the asymptotic convection through the infinite-many homoclinic orbits in the five-dimensional dynamical system. The dynamics of fluid flows in the convective thermal systems are revealed, and one can use such methodology to predict atmospheric and oceanic phenomena through thermal convections.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信