非局部相对论 $$\delta $$hell 相互作用

IF 1.3 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Lukáš Heriban, Matěj Tušek
{"title":"非局部相对论 $$\\delta $$hell 相互作用","authors":"Lukáš Heriban,&nbsp;Matěj Tušek","doi":"10.1007/s11005-024-01828-6","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, new self-adjoint realizations of the Dirac operator in dimension two and three are introduced. It is shown that they may be associated with the formal expression <span>\\(\\mathcal {D}_0+|F\\delta _\\Sigma \\rangle \\langle G\\delta _\\Sigma |\\)</span>, where <span>\\(\\mathcal {D}_0\\)</span> is the free Dirac operator, <i>F</i> and <i>G</i> are matrix valued coefficients, and <span>\\(\\delta _\\Sigma \\)</span> stands for the single layer distribution supported on a hypersurface <span>\\(\\Sigma \\)</span>, and that they can be understood as limits of the Dirac operators with scaled non-local potentials. Furthermore, their spectral properties are analysed.</p></div>","PeriodicalId":685,"journal":{"name":"Letters in Mathematical Physics","volume":"114 3","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11005-024-01828-6.pdf","citationCount":"0","resultStr":"{\"title\":\"Non-local relativistic \\\\(\\\\delta \\\\)-shell interactions\",\"authors\":\"Lukáš Heriban,&nbsp;Matěj Tušek\",\"doi\":\"10.1007/s11005-024-01828-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, new self-adjoint realizations of the Dirac operator in dimension two and three are introduced. It is shown that they may be associated with the formal expression <span>\\\\(\\\\mathcal {D}_0+|F\\\\delta _\\\\Sigma \\\\rangle \\\\langle G\\\\delta _\\\\Sigma |\\\\)</span>, where <span>\\\\(\\\\mathcal {D}_0\\\\)</span> is the free Dirac operator, <i>F</i> and <i>G</i> are matrix valued coefficients, and <span>\\\\(\\\\delta _\\\\Sigma \\\\)</span> stands for the single layer distribution supported on a hypersurface <span>\\\\(\\\\Sigma \\\\)</span>, and that they can be understood as limits of the Dirac operators with scaled non-local potentials. Furthermore, their spectral properties are analysed.</p></div>\",\"PeriodicalId\":685,\"journal\":{\"name\":\"Letters in Mathematical Physics\",\"volume\":\"114 3\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11005-024-01828-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Letters in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11005-024-01828-6\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11005-024-01828-6","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了二维和三维狄拉克算子的新自交实现。其中\(\mathcal {D}_0\) 是自由狄拉克算子,F 和 G 是矩阵值系数、和 \(\delta _\Sigma \)代表支持在超表面 \(\Sigma \)上的单层分布,它们可以被理解为具有缩放非局部势的狄拉克算子的极限。此外,还分析了它们的光谱特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-local relativistic \(\delta \)-shell interactions

In this paper, new self-adjoint realizations of the Dirac operator in dimension two and three are introduced. It is shown that they may be associated with the formal expression \(\mathcal {D}_0+|F\delta _\Sigma \rangle \langle G\delta _\Sigma |\), where \(\mathcal {D}_0\) is the free Dirac operator, F and G are matrix valued coefficients, and \(\delta _\Sigma \) stands for the single layer distribution supported on a hypersurface \(\Sigma \), and that they can be understood as limits of the Dirac operators with scaled non-local potentials. Furthermore, their spectral properties are analysed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Letters in Mathematical Physics
Letters in Mathematical Physics 物理-物理:数学物理
CiteScore
2.40
自引率
8.30%
发文量
111
审稿时长
3 months
期刊介绍: The aim of Letters in Mathematical Physics is to attract the community''s attention on important and original developments in the area of mathematical physics and contemporary theoretical physics. The journal publishes letters and longer research articles, occasionally also articles containing topical reviews. We are committed to both fast publication and careful refereeing. In addition, the journal offers important contributions to modern mathematics in fields which have a potential physical application, and important developments in theoretical physics which have potential mathematical impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信