Dario Sanna, Edoardo Maria Leonardi, G. De Angelis, Mauro Pontani
{"title":"从网关到低月球轨道的最佳脉冲轨道转换","authors":"Dario Sanna, Edoardo Maria Leonardi, G. De Angelis, Mauro Pontani","doi":"10.3390/aerospace11060460","DOIUrl":null,"url":null,"abstract":"Gateway represents a key element of the Artemis program for the upcoming lunar exploration aimed at establishing a sustainable presence by the mid-2030s. This paper investigates minimum-fuel bi-impulsive orbit transfers from Gateway to low lunar orbits (LLOs) with a maximum time of flight of 48 h. Two distinct scenarios are analyzed: (i) target orbits with free right ascension of the ascending node (RAAN), and (ii) target orbits with specified RAAN. For case (i), a global optimization technique based on a heuristic algorithm is exploited to obtain the minimum-fuel transfer. Several inclinations of the target orbit are considered. For case (ii), two distinct techniques are proposed: (a) a purely heuristic approach, and (b) a semi-analytical method based on local refinement of a Lambert-based solution. Numerical propagations are conducted in all scenarios in a high-fidelity framework that includes all relevant perturbations. A comparison between the different strategies and the related numerical results is provided.","PeriodicalId":48525,"journal":{"name":"Aerospace","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal Impulsive Orbit Transfers from Gateway to Low Lunar Orbit\",\"authors\":\"Dario Sanna, Edoardo Maria Leonardi, G. De Angelis, Mauro Pontani\",\"doi\":\"10.3390/aerospace11060460\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gateway represents a key element of the Artemis program for the upcoming lunar exploration aimed at establishing a sustainable presence by the mid-2030s. This paper investigates minimum-fuel bi-impulsive orbit transfers from Gateway to low lunar orbits (LLOs) with a maximum time of flight of 48 h. Two distinct scenarios are analyzed: (i) target orbits with free right ascension of the ascending node (RAAN), and (ii) target orbits with specified RAAN. For case (i), a global optimization technique based on a heuristic algorithm is exploited to obtain the minimum-fuel transfer. Several inclinations of the target orbit are considered. For case (ii), two distinct techniques are proposed: (a) a purely heuristic approach, and (b) a semi-analytical method based on local refinement of a Lambert-based solution. Numerical propagations are conducted in all scenarios in a high-fidelity framework that includes all relevant perturbations. A comparison between the different strategies and the related numerical results is provided.\",\"PeriodicalId\":48525,\"journal\":{\"name\":\"Aerospace\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerospace\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/aerospace11060460\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/aerospace11060460","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Optimal Impulsive Orbit Transfers from Gateway to Low Lunar Orbit
Gateway represents a key element of the Artemis program for the upcoming lunar exploration aimed at establishing a sustainable presence by the mid-2030s. This paper investigates minimum-fuel bi-impulsive orbit transfers from Gateway to low lunar orbits (LLOs) with a maximum time of flight of 48 h. Two distinct scenarios are analyzed: (i) target orbits with free right ascension of the ascending node (RAAN), and (ii) target orbits with specified RAAN. For case (i), a global optimization technique based on a heuristic algorithm is exploited to obtain the minimum-fuel transfer. Several inclinations of the target orbit are considered. For case (ii), two distinct techniques are proposed: (a) a purely heuristic approach, and (b) a semi-analytical method based on local refinement of a Lambert-based solution. Numerical propagations are conducted in all scenarios in a high-fidelity framework that includes all relevant perturbations. A comparison between the different strategies and the related numerical results is provided.
期刊介绍:
Aerospace is a multidisciplinary science inviting submissions on, but not limited to, the following subject areas: aerodynamics computational fluid dynamics fluid-structure interaction flight mechanics plasmas research instrumentation test facilities environment material science structural analysis thermophysics and heat transfer thermal-structure interaction aeroacoustics optics electromagnetism and radar propulsion power generation and conversion fuels and propellants combustion multidisciplinary design optimization software engineering data analysis signal and image processing artificial intelligence aerospace vehicles'' operation, control and maintenance risk and reliability human factors human-automation interaction airline operations and management air traffic management airport design meteorology space exploration multi-physics interaction.