Brian J. Levandowski, Brian J. Graham, Nile S. Abularrage, Ronald T. Raines
{"title":"控制质子化螺环 4H 吡唑的 1,5-sigmatropic 漂移","authors":"Brian J. Levandowski, Brian J. Graham, Nile S. Abularrage, Ronald T. Raines","doi":"10.1002/poc.4642","DOIUrl":null,"url":null,"abstract":"<p>The condensation of 1,3-diketones with hydrazine to access 4<i>H</i>-pyrazoles is a well-established synthetic route that travels through a 4<i>H</i>-pyrazol-1-ium intermediate. In the route to a 3,5-diphenyl-4<i>H</i>-pyrazole containing a cyclobutane spirocycle, density functional theory calculations predict, and experiments show that the protonated intermediate undergoes a rapid 1,5-sigmatropic shift to form a tetrahydrocyclopenta[<i>c</i>]pyrazole. Replacing the 3,5-diphenyl groups with 2-furanyl groups decreases the calculated rate of the 1,5-sigmatropic shift by 6.2 × 10<sup>5</sup>-fold and enables the isolation of new spirocyclic 4<i>H</i>-pyrazoles for click chemistry.</p>","PeriodicalId":16829,"journal":{"name":"Journal of Physical Organic Chemistry","volume":"37 9","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/poc.4642","citationCount":"0","resultStr":"{\"title\":\"Taming the 1,5-sigmatropic shift across protonated spirocyclic 4H-pyrazoles\",\"authors\":\"Brian J. Levandowski, Brian J. Graham, Nile S. Abularrage, Ronald T. Raines\",\"doi\":\"10.1002/poc.4642\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The condensation of 1,3-diketones with hydrazine to access 4<i>H</i>-pyrazoles is a well-established synthetic route that travels through a 4<i>H</i>-pyrazol-1-ium intermediate. In the route to a 3,5-diphenyl-4<i>H</i>-pyrazole containing a cyclobutane spirocycle, density functional theory calculations predict, and experiments show that the protonated intermediate undergoes a rapid 1,5-sigmatropic shift to form a tetrahydrocyclopenta[<i>c</i>]pyrazole. Replacing the 3,5-diphenyl groups with 2-furanyl groups decreases the calculated rate of the 1,5-sigmatropic shift by 6.2 × 10<sup>5</sup>-fold and enables the isolation of new spirocyclic 4<i>H</i>-pyrazoles for click chemistry.</p>\",\"PeriodicalId\":16829,\"journal\":{\"name\":\"Journal of Physical Organic Chemistry\",\"volume\":\"37 9\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/poc.4642\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physical Organic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/poc.4642\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physical Organic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/poc.4642","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
Taming the 1,5-sigmatropic shift across protonated spirocyclic 4H-pyrazoles
The condensation of 1,3-diketones with hydrazine to access 4H-pyrazoles is a well-established synthetic route that travels through a 4H-pyrazol-1-ium intermediate. In the route to a 3,5-diphenyl-4H-pyrazole containing a cyclobutane spirocycle, density functional theory calculations predict, and experiments show that the protonated intermediate undergoes a rapid 1,5-sigmatropic shift to form a tetrahydrocyclopenta[c]pyrazole. Replacing the 3,5-diphenyl groups with 2-furanyl groups decreases the calculated rate of the 1,5-sigmatropic shift by 6.2 × 105-fold and enables the isolation of new spirocyclic 4H-pyrazoles for click chemistry.
期刊介绍:
The Journal of Physical Organic Chemistry is the foremost international journal devoted to the relationship between molecular structure and chemical reactivity in organic systems. It publishes Research Articles, Reviews and Mini Reviews based on research striving to understand the principles governing chemical structures in relation to activity and transformation with physical and mathematical rigor, using results derived from experimental and computational methods. Physical Organic Chemistry is a central and fundamental field with multiple applications in fields such as molecular recognition, supramolecular chemistry, catalysis, photochemistry, biological and material sciences, nanotechnology and surface science.