利用田口优化和神经网络加速提高波束成形效率

Telecom Pub Date : 2024-06-07 DOI:10.3390/telecom5020023
Ramzi Kheder, R. Ghayoula, A. Smida, I. El Gmati, Lassad Latrach, W. Amara, Amor Hammami, J. Fattahi, M. Waly
{"title":"利用田口优化和神经网络加速提高波束成形效率","authors":"Ramzi Kheder, R. Ghayoula, A. Smida, I. El Gmati, Lassad Latrach, W. Amara, Amor Hammami, J. Fattahi, M. Waly","doi":"10.3390/telecom5020023","DOIUrl":null,"url":null,"abstract":"This article presents an innovative method for efficiently synthesizing radiation patterns by combining the Taguchi method and neural networks, validating the results on a ten-element antenna array. The Taguchi method aims to minimize product and process variability, while neural networks are used to model the relationship between antenna design parameters and radiation pattern characteristics. This approach utilizes Taguchi parameters as inputs for the neural network, which is then trained on a dataset generated by the Taguchi method. After training, the network is validated using a real ten-element antenna array. Analytical results demonstrate that this method enables efficient synthesis of radiation patterns, with a significant reduction in computation time compared to traditional approaches. Furthermore, validation on the antenna array confirms the accuracy and robustness of the approach, showing a high correlation between the performance predicted by the neural network model and actual measurements on the antenna array. In summary, our article highlights that the combined use of the Taguchi method and neural networks, with validation on a real antenna array, offers a promising approach for efficient synthesis of antenna radiation patterns. This approach combines speed, accuracy, and reliability in antenna system design.","PeriodicalId":509646,"journal":{"name":"Telecom","volume":" 23","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Beamforming Efficiency Utilizing Taguchi Optimization and Neural Network Acceleration\",\"authors\":\"Ramzi Kheder, R. Ghayoula, A. Smida, I. El Gmati, Lassad Latrach, W. Amara, Amor Hammami, J. Fattahi, M. Waly\",\"doi\":\"10.3390/telecom5020023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents an innovative method for efficiently synthesizing radiation patterns by combining the Taguchi method and neural networks, validating the results on a ten-element antenna array. The Taguchi method aims to minimize product and process variability, while neural networks are used to model the relationship between antenna design parameters and radiation pattern characteristics. This approach utilizes Taguchi parameters as inputs for the neural network, which is then trained on a dataset generated by the Taguchi method. After training, the network is validated using a real ten-element antenna array. Analytical results demonstrate that this method enables efficient synthesis of radiation patterns, with a significant reduction in computation time compared to traditional approaches. Furthermore, validation on the antenna array confirms the accuracy and robustness of the approach, showing a high correlation between the performance predicted by the neural network model and actual measurements on the antenna array. In summary, our article highlights that the combined use of the Taguchi method and neural networks, with validation on a real antenna array, offers a promising approach for efficient synthesis of antenna radiation patterns. This approach combines speed, accuracy, and reliability in antenna system design.\",\"PeriodicalId\":509646,\"journal\":{\"name\":\"Telecom\",\"volume\":\" 23\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Telecom\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/telecom5020023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Telecom","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/telecom5020023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种结合田口方法和神经网络有效合成辐射模式的创新方法,并对十元天线阵列的结果进行了验证。田口方法旨在最大限度地减少产品和流程的可变性,而神经网络则用于模拟天线设计参数与辐射模式特征之间的关系。这种方法利用田口参数作为神经网络的输入,然后在田口方法生成的数据集上对神经网络进行训练。训练完成后,使用真实的十元天线阵列对网络进行验证。分析结果表明,与传统方法相比,这种方法能高效合成辐射模式,并显著减少计算时间。此外,在天线阵列上进行的验证证实了该方法的准确性和鲁棒性,表明神经网络模型预测的性能与天线阵列上的实际测量结果之间具有很高的相关性。总之,我们的文章强调,结合使用田口方法和神经网络,并在实际天线阵列上进行验证,为高效合成天线辐射模式提供了一种前景广阔的方法。这种方法结合了天线系统设计的速度、准确性和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing Beamforming Efficiency Utilizing Taguchi Optimization and Neural Network Acceleration
This article presents an innovative method for efficiently synthesizing radiation patterns by combining the Taguchi method and neural networks, validating the results on a ten-element antenna array. The Taguchi method aims to minimize product and process variability, while neural networks are used to model the relationship between antenna design parameters and radiation pattern characteristics. This approach utilizes Taguchi parameters as inputs for the neural network, which is then trained on a dataset generated by the Taguchi method. After training, the network is validated using a real ten-element antenna array. Analytical results demonstrate that this method enables efficient synthesis of radiation patterns, with a significant reduction in computation time compared to traditional approaches. Furthermore, validation on the antenna array confirms the accuracy and robustness of the approach, showing a high correlation between the performance predicted by the neural network model and actual measurements on the antenna array. In summary, our article highlights that the combined use of the Taguchi method and neural networks, with validation on a real antenna array, offers a promising approach for efficient synthesis of antenna radiation patterns. This approach combines speed, accuracy, and reliability in antenna system design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信