{"title":"生物燃料对压燃发动机燃烧和摩擦学特性的实验和数值研究","authors":"I. Temizer, Fırat Gücer","doi":"10.1177/09544089241258177","DOIUrl":null,"url":null,"abstract":"Today, the tightening of exhaust emission regulations in engines directs researchers to alternative fuel types. In this study investigated the impact of blending diesel fuel with bioethanol and diethyl-ether on combustion parameters and exhaust emissions in a single-cylinder DI (direct injection) diesel engine. Both numerical and experimental analyses were used to compare the in-cylinder pressure and heat release rate of various fuel blends. Fuel spray/temperature/equivalence changes in the cylinder for different crank angles were created for different fuel types. The analysis was examined various parameters such as in-cylinder pressure, temperature, heat release rate, mass fraction burned, fuel spray formations, and equivalence ratio at variable crank angles. Results showed that all blended fuels exhibited a decrease in in-cylinder maximum pressure, temperature, and heat release rates compared to 100% diesel fuel, with an increase in mass fraction burned. CO2 emissions of D90E10 (90% diesel fuel + 10% bioethanol), D80E20 (80% diesel fuel + 20% bioethanol), D80E10DEE10 (80% diesel fuel 10% bioethanol + 10% diethyl ether) and D85E10DEE5 (85% diesel fuel + 10% bioethanol + 5% diethyl ether) fuelled engine were decreased rates 2%, 2.9%, 5% and 3.8% compared to D100 (100%diesel fuel) operation, respectively. Also, the maximum pressure in the chamber was decreased rate 3% in D80E10DEE10 fuel operation, compared to diesel fuel. Based on FTIR (Fourier Transform Infra-Red) data, the lubricating oil analyses showed that there was no significant decline in oil performance after 110 h of operation with different fuel types. However, a closer examination of the AVL FIRE program data and the EDX (Energy Dispersive X-Ray) analysis of the first ring uncovered that the wear patterns observed on the ring while using D100 fuel were heavily influenced by temperature and pressure parameters. This was particularly noticeable when compared to blended fuels that included bioethanol.","PeriodicalId":506108,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering","volume":" 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The experimental and numerical investigation of biofuels on combustion and tribology characteristics in a compression ignition engine\",\"authors\":\"I. Temizer, Fırat Gücer\",\"doi\":\"10.1177/09544089241258177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Today, the tightening of exhaust emission regulations in engines directs researchers to alternative fuel types. In this study investigated the impact of blending diesel fuel with bioethanol and diethyl-ether on combustion parameters and exhaust emissions in a single-cylinder DI (direct injection) diesel engine. Both numerical and experimental analyses were used to compare the in-cylinder pressure and heat release rate of various fuel blends. Fuel spray/temperature/equivalence changes in the cylinder for different crank angles were created for different fuel types. The analysis was examined various parameters such as in-cylinder pressure, temperature, heat release rate, mass fraction burned, fuel spray formations, and equivalence ratio at variable crank angles. Results showed that all blended fuels exhibited a decrease in in-cylinder maximum pressure, temperature, and heat release rates compared to 100% diesel fuel, with an increase in mass fraction burned. CO2 emissions of D90E10 (90% diesel fuel + 10% bioethanol), D80E20 (80% diesel fuel + 20% bioethanol), D80E10DEE10 (80% diesel fuel 10% bioethanol + 10% diethyl ether) and D85E10DEE5 (85% diesel fuel + 10% bioethanol + 5% diethyl ether) fuelled engine were decreased rates 2%, 2.9%, 5% and 3.8% compared to D100 (100%diesel fuel) operation, respectively. Also, the maximum pressure in the chamber was decreased rate 3% in D80E10DEE10 fuel operation, compared to diesel fuel. Based on FTIR (Fourier Transform Infra-Red) data, the lubricating oil analyses showed that there was no significant decline in oil performance after 110 h of operation with different fuel types. However, a closer examination of the AVL FIRE program data and the EDX (Energy Dispersive X-Ray) analysis of the first ring uncovered that the wear patterns observed on the ring while using D100 fuel were heavily influenced by temperature and pressure parameters. This was particularly noticeable when compared to blended fuels that included bioethanol.\",\"PeriodicalId\":506108,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering\",\"volume\":\" 7\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/09544089241258177\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/09544089241258177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The experimental and numerical investigation of biofuels on combustion and tribology characteristics in a compression ignition engine
Today, the tightening of exhaust emission regulations in engines directs researchers to alternative fuel types. In this study investigated the impact of blending diesel fuel with bioethanol and diethyl-ether on combustion parameters and exhaust emissions in a single-cylinder DI (direct injection) diesel engine. Both numerical and experimental analyses were used to compare the in-cylinder pressure and heat release rate of various fuel blends. Fuel spray/temperature/equivalence changes in the cylinder for different crank angles were created for different fuel types. The analysis was examined various parameters such as in-cylinder pressure, temperature, heat release rate, mass fraction burned, fuel spray formations, and equivalence ratio at variable crank angles. Results showed that all blended fuels exhibited a decrease in in-cylinder maximum pressure, temperature, and heat release rates compared to 100% diesel fuel, with an increase in mass fraction burned. CO2 emissions of D90E10 (90% diesel fuel + 10% bioethanol), D80E20 (80% diesel fuel + 20% bioethanol), D80E10DEE10 (80% diesel fuel 10% bioethanol + 10% diethyl ether) and D85E10DEE5 (85% diesel fuel + 10% bioethanol + 5% diethyl ether) fuelled engine were decreased rates 2%, 2.9%, 5% and 3.8% compared to D100 (100%diesel fuel) operation, respectively. Also, the maximum pressure in the chamber was decreased rate 3% in D80E10DEE10 fuel operation, compared to diesel fuel. Based on FTIR (Fourier Transform Infra-Red) data, the lubricating oil analyses showed that there was no significant decline in oil performance after 110 h of operation with different fuel types. However, a closer examination of the AVL FIRE program data and the EDX (Energy Dispersive X-Ray) analysis of the first ring uncovered that the wear patterns observed on the ring while using D100 fuel were heavily influenced by temperature and pressure parameters. This was particularly noticeable when compared to blended fuels that included bioethanol.