Zhangpeng Ni, Wu Bing, Guangwen Xiao, Shen Quan, Linquan Yao
{"title":"低附着力牵引过程中神经网络与直接扭矩控制相结合的轮轨附着力控制模型","authors":"Zhangpeng Ni, Wu Bing, Guangwen Xiao, Shen Quan, Linquan Yao","doi":"10.1177/10775463241257576","DOIUrl":null,"url":null,"abstract":"In the realm of train traction, achieving optimal utilization of wheel-rail adhesion is of utmost importance. The motor’s efficiency plays a significant role in this process. However, there has been limited research on adhesion optimization for motor control in recent years. Therefore, this paper proposes a neural network controller based on the Levenberg–Marquardt (LM) algorithm to improve adaptive regulation ability. This approach integrates the direct torque control (DTC) method, which utilizes a three-phase asynchronous motor to output torque and speed. By integrating these techniques, we mitigate the significant slip occurrence during complex low-adhesion scenarios. MATLAB/Simulink simulations are conducted using three different rails: dry, greasy, and wet, each with distinct characteristics. The obtained results demonstrate that the proposed strategy optimizes adhesion utilization while mitigating excessive slip, and exhibits excellent robustness and self-regulation capabilities throughout the adhesion optimization process.","PeriodicalId":508293,"journal":{"name":"Journal of Vibration and Control","volume":" 43","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wheel-rail adhesion control model by integrating neural network and direct torque control during traction under low adhesion\",\"authors\":\"Zhangpeng Ni, Wu Bing, Guangwen Xiao, Shen Quan, Linquan Yao\",\"doi\":\"10.1177/10775463241257576\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the realm of train traction, achieving optimal utilization of wheel-rail adhesion is of utmost importance. The motor’s efficiency plays a significant role in this process. However, there has been limited research on adhesion optimization for motor control in recent years. Therefore, this paper proposes a neural network controller based on the Levenberg–Marquardt (LM) algorithm to improve adaptive regulation ability. This approach integrates the direct torque control (DTC) method, which utilizes a three-phase asynchronous motor to output torque and speed. By integrating these techniques, we mitigate the significant slip occurrence during complex low-adhesion scenarios. MATLAB/Simulink simulations are conducted using three different rails: dry, greasy, and wet, each with distinct characteristics. The obtained results demonstrate that the proposed strategy optimizes adhesion utilization while mitigating excessive slip, and exhibits excellent robustness and self-regulation capabilities throughout the adhesion optimization process.\",\"PeriodicalId\":508293,\"journal\":{\"name\":\"Journal of Vibration and Control\",\"volume\":\" 43\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Vibration and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/10775463241257576\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vibration and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/10775463241257576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Wheel-rail adhesion control model by integrating neural network and direct torque control during traction under low adhesion
In the realm of train traction, achieving optimal utilization of wheel-rail adhesion is of utmost importance. The motor’s efficiency plays a significant role in this process. However, there has been limited research on adhesion optimization for motor control in recent years. Therefore, this paper proposes a neural network controller based on the Levenberg–Marquardt (LM) algorithm to improve adaptive regulation ability. This approach integrates the direct torque control (DTC) method, which utilizes a three-phase asynchronous motor to output torque and speed. By integrating these techniques, we mitigate the significant slip occurrence during complex low-adhesion scenarios. MATLAB/Simulink simulations are conducted using three different rails: dry, greasy, and wet, each with distinct characteristics. The obtained results demonstrate that the proposed strategy optimizes adhesion utilization while mitigating excessive slip, and exhibits excellent robustness and self-regulation capabilities throughout the adhesion optimization process.