{"title":"不同硼含量的铁-铬-钛涂层的侵蚀磨损研究","authors":"R. Sharma, Shiv Ranjan Kumar","doi":"10.1177/09544089241258842","DOIUrl":null,"url":null,"abstract":"The current work examines the role of the addition of boron on the microstructure, mechanical characteristics, and slurry erosion wear behaviour of the Fe-Cr-Ti alloy. Five distinct Fe-Cr-Ti alloy coatings were prepared, each with varying boron contents (ranging from 0% to 20% by weight), and subsequently applied to 316L steel using the HVOF method. The study encompassed an assessment of mechanical characteristics, including hardness, adhesion tensile strength, and fracture toughness, alongside an examination of slurry erosion wear behavior employing a slurry jet erosion wear tester. X-ray diffraction (XRD) analysis confirmed the emergence of Fe2Br, contributing to the enhancement in the mechanical properties. Remarkably, the addition of 5% boron resulted in a notable improvement in the hardness and adhesion tensile strength by 2.3%, and 9% respectively, but a significant improvement in fracture toughness by 45%. As the impact speed increased from 35 m/sec to 70 m/sec and the slurry concentration increased from 10 weight per cent to 20 weight per cent, and wear rate increased by 51% and 37.7%, respectively. Conversely, an elevation in the impingement angle between 30° and 60° led to a 69.5% increase in wear rate, whereas between 60° and 90°, it resulted in a reduction of 19.3%.","PeriodicalId":506108,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering","volume":" 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Erosion wear investigation of Fe-Cr-Ti coating with varying boron content\",\"authors\":\"R. Sharma, Shiv Ranjan Kumar\",\"doi\":\"10.1177/09544089241258842\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The current work examines the role of the addition of boron on the microstructure, mechanical characteristics, and slurry erosion wear behaviour of the Fe-Cr-Ti alloy. Five distinct Fe-Cr-Ti alloy coatings were prepared, each with varying boron contents (ranging from 0% to 20% by weight), and subsequently applied to 316L steel using the HVOF method. The study encompassed an assessment of mechanical characteristics, including hardness, adhesion tensile strength, and fracture toughness, alongside an examination of slurry erosion wear behavior employing a slurry jet erosion wear tester. X-ray diffraction (XRD) analysis confirmed the emergence of Fe2Br, contributing to the enhancement in the mechanical properties. Remarkably, the addition of 5% boron resulted in a notable improvement in the hardness and adhesion tensile strength by 2.3%, and 9% respectively, but a significant improvement in fracture toughness by 45%. As the impact speed increased from 35 m/sec to 70 m/sec and the slurry concentration increased from 10 weight per cent to 20 weight per cent, and wear rate increased by 51% and 37.7%, respectively. Conversely, an elevation in the impingement angle between 30° and 60° led to a 69.5% increase in wear rate, whereas between 60° and 90°, it resulted in a reduction of 19.3%.\",\"PeriodicalId\":506108,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering\",\"volume\":\" 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/09544089241258842\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/09544089241258842","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Erosion wear investigation of Fe-Cr-Ti coating with varying boron content
The current work examines the role of the addition of boron on the microstructure, mechanical characteristics, and slurry erosion wear behaviour of the Fe-Cr-Ti alloy. Five distinct Fe-Cr-Ti alloy coatings were prepared, each with varying boron contents (ranging from 0% to 20% by weight), and subsequently applied to 316L steel using the HVOF method. The study encompassed an assessment of mechanical characteristics, including hardness, adhesion tensile strength, and fracture toughness, alongside an examination of slurry erosion wear behavior employing a slurry jet erosion wear tester. X-ray diffraction (XRD) analysis confirmed the emergence of Fe2Br, contributing to the enhancement in the mechanical properties. Remarkably, the addition of 5% boron resulted in a notable improvement in the hardness and adhesion tensile strength by 2.3%, and 9% respectively, but a significant improvement in fracture toughness by 45%. As the impact speed increased from 35 m/sec to 70 m/sec and the slurry concentration increased from 10 weight per cent to 20 weight per cent, and wear rate increased by 51% and 37.7%, respectively. Conversely, an elevation in the impingement angle between 30° and 60° led to a 69.5% increase in wear rate, whereas between 60° and 90°, it resulted in a reduction of 19.3%.