茎木和秸秆脱碳的高级热重分析:通过燃烧进行热解

Reactions Pub Date : 2024-06-07 DOI:10.3390/reactions5020018
David R. Wagner
{"title":"茎木和秸秆脱碳的高级热重分析:通过燃烧进行热解","authors":"David R. Wagner","doi":"10.3390/reactions5020018","DOIUrl":null,"url":null,"abstract":"Process design critically depends on the characterization of fuels and their kinetics under process conditions. This study steps beyond the fundamental methods of thermogravimetry to modulated (MTGA) and Hi-Res™ (high resolution) techniques to (1) add characterization detail and (2) increase the utility of thermal analysis data. Modulated TGA methods overlay sinusoidal functions on the heating rates to determine activation energy as a function of temperature with time. Under devolatilization conditions, Hi-Res™ TGA maintains a constant mass loss with time and temperature. These two methods, run independently or overlaid, offer additional analysis in which multiple samples at different heating rates are run to different final temperatures. Advanced methods allow researchers to use fewer samples by conducting fewer runs, targeting practical experimental designs, and quantifying errors easier. The parameters of the studies included here vary the heating rate at 10, 30, and 50 °C/min; vary gas-phase oxygen for pyrolysis or combustion conditions; and particle size ranges of 100–125 µm, 400–425 µm, and 600–630 µm. The two biomass fuels used in the studies are pinewood from Northern Sweden and wheat straw. The influence of torrefaction is also included at temperatures of 220, 250, and 280 °C. Apparent activation energy results align with the previous MTGA data in that combustion conditions yield higher values than pyrolysis conditions—200–250 kJ/mol and 175–225 kJ/mol for pine and wheat combustion, respectively, depending on pre-treatment. Results show the dependence of these parameters upon one another from a traditional thermal analysis approach, e.g., the Ozawa-Flynn-Wall method, as well as MTGA and Hi-Res™ thermogravimetric investigations to show future directions for thermal analysis techniques.","PeriodicalId":20873,"journal":{"name":"Reactions","volume":" 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advanced Thermogravimetric Analyses of Stem Wood and Straw Devolatilization: Torrefaction through Combustion\",\"authors\":\"David R. Wagner\",\"doi\":\"10.3390/reactions5020018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Process design critically depends on the characterization of fuels and their kinetics under process conditions. This study steps beyond the fundamental methods of thermogravimetry to modulated (MTGA) and Hi-Res™ (high resolution) techniques to (1) add characterization detail and (2) increase the utility of thermal analysis data. Modulated TGA methods overlay sinusoidal functions on the heating rates to determine activation energy as a function of temperature with time. Under devolatilization conditions, Hi-Res™ TGA maintains a constant mass loss with time and temperature. These two methods, run independently or overlaid, offer additional analysis in which multiple samples at different heating rates are run to different final temperatures. Advanced methods allow researchers to use fewer samples by conducting fewer runs, targeting practical experimental designs, and quantifying errors easier. The parameters of the studies included here vary the heating rate at 10, 30, and 50 °C/min; vary gas-phase oxygen for pyrolysis or combustion conditions; and particle size ranges of 100–125 µm, 400–425 µm, and 600–630 µm. The two biomass fuels used in the studies are pinewood from Northern Sweden and wheat straw. The influence of torrefaction is also included at temperatures of 220, 250, and 280 °C. Apparent activation energy results align with the previous MTGA data in that combustion conditions yield higher values than pyrolysis conditions—200–250 kJ/mol and 175–225 kJ/mol for pine and wheat combustion, respectively, depending on pre-treatment. Results show the dependence of these parameters upon one another from a traditional thermal analysis approach, e.g., the Ozawa-Flynn-Wall method, as well as MTGA and Hi-Res™ thermogravimetric investigations to show future directions for thermal analysis techniques.\",\"PeriodicalId\":20873,\"journal\":{\"name\":\"Reactions\",\"volume\":\" 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reactions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/reactions5020018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/reactions5020018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

工艺设计在很大程度上取决于燃料及其在工艺条件下的动力学特性。这项研究超越了热重分析的基本方法,采用了调制 (MTGA) 和 Hi-Res™(高分辨率)技术,以 (1) 增加表征细节,(2) 提高热分析数据的实用性。调制 TGA 方法在加热速率上叠加正弦函数,以确定活化能随时间变化的温度函数。在脱溶剂条件下,Hi-Res™ TGA 保持质量损失随时间和温度的恒定变化。这两种方法可独立运行,也可叠加运行,提供额外的分析,以不同的加热速率将多个样品运行到不同的最终温度。先进的方法允许研究人员通过减少运行次数来使用更少的样品,以实用的实验设计为目标,并且更容易量化误差。本文研究的参数包括:加热速率为 10、30 和 50 °C/分钟;热解或燃烧条件的气相氧气不同;颗粒大小范围为 100-125 微米、400-425 微米和 600-630 微米。研究中使用的两种生物质燃料是瑞典北部的松木和小麦秸秆。在 220、250 和 280 °C 的温度下,还包括了热解的影响。表观活化能结果与之前的 MTGA 数据一致,即燃烧条件下的表观活化能值高于热解条件下的表观活化能值--松木和小麦燃烧的表观活化能值分别为 250 kJ/mol 和 175-225 kJ/mol,具体取决于预处理情况。结果显示了传统热分析方法(如小泽-弗林-沃尔法)以及 MTGA 和 Hi-Res™ 热重法研究中这些参数的相互依存关系,为热分析技术的未来发展指明了方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advanced Thermogravimetric Analyses of Stem Wood and Straw Devolatilization: Torrefaction through Combustion
Process design critically depends on the characterization of fuels and their kinetics under process conditions. This study steps beyond the fundamental methods of thermogravimetry to modulated (MTGA) and Hi-Res™ (high resolution) techniques to (1) add characterization detail and (2) increase the utility of thermal analysis data. Modulated TGA methods overlay sinusoidal functions on the heating rates to determine activation energy as a function of temperature with time. Under devolatilization conditions, Hi-Res™ TGA maintains a constant mass loss with time and temperature. These two methods, run independently or overlaid, offer additional analysis in which multiple samples at different heating rates are run to different final temperatures. Advanced methods allow researchers to use fewer samples by conducting fewer runs, targeting practical experimental designs, and quantifying errors easier. The parameters of the studies included here vary the heating rate at 10, 30, and 50 °C/min; vary gas-phase oxygen for pyrolysis or combustion conditions; and particle size ranges of 100–125 µm, 400–425 µm, and 600–630 µm. The two biomass fuels used in the studies are pinewood from Northern Sweden and wheat straw. The influence of torrefaction is also included at temperatures of 220, 250, and 280 °C. Apparent activation energy results align with the previous MTGA data in that combustion conditions yield higher values than pyrolysis conditions—200–250 kJ/mol and 175–225 kJ/mol for pine and wheat combustion, respectively, depending on pre-treatment. Results show the dependence of these parameters upon one another from a traditional thermal analysis approach, e.g., the Ozawa-Flynn-Wall method, as well as MTGA and Hi-Res™ thermogravimetric investigations to show future directions for thermal analysis techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信