在噪声语音中利用基于累积功率谱的加权自相关函数提取基频

Nargis Parvin, Moinur Rahman, Irana Tabassum Ananna, Md. Saifur Rahman
{"title":"在噪声语音中利用基于累积功率谱的加权自相关函数提取基频","authors":"Nargis Parvin, Moinur Rahman, Irana Tabassum Ananna, Md. Saifur Rahman","doi":"10.5815/ijitcs.2024.03.05","DOIUrl":null,"url":null,"abstract":"This research suggests an efficient idea that is better suited for speech processing applications for retrieving the accurate pitch from speech signal in noisy conditions. For this objective, we present a fundamental frequency extraction algorithm and that is tolerant to the non-stationary changes of the amplitude and frequency of the input signal. Moreover, we use an accumulated power spectrum instead of power spectrum, which uses the shorter sub-frames of the input signal to reduce the noise characteristics of the speech signals. To increase the accuracy of the fundamental frequency extraction we have concentrated on maintaining the speech harmonics in their original state and suppressing the noise elements involved in the noisy speech signal. The two stages that make up the suggested fundamental frequency extraction approach are producing the accumulated power spectrum of the speech signal and weighting it with the average magnitude difference function. As per the experiment results, the proposed technique appears to be better in noisy situations than other existing state-of-the-art methods such as Weighted Autocorrelation Function (WAF), PEFAC, and BaNa.","PeriodicalId":130361,"journal":{"name":"International Journal of Information Technology and Computer Science","volume":" 45","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fundamental Frequency Extraction by Utilizing Accumulated Power Spectrum based Weighted Autocorrelation Function in Noisy Speech\",\"authors\":\"Nargis Parvin, Moinur Rahman, Irana Tabassum Ananna, Md. Saifur Rahman\",\"doi\":\"10.5815/ijitcs.2024.03.05\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research suggests an efficient idea that is better suited for speech processing applications for retrieving the accurate pitch from speech signal in noisy conditions. For this objective, we present a fundamental frequency extraction algorithm and that is tolerant to the non-stationary changes of the amplitude and frequency of the input signal. Moreover, we use an accumulated power spectrum instead of power spectrum, which uses the shorter sub-frames of the input signal to reduce the noise characteristics of the speech signals. To increase the accuracy of the fundamental frequency extraction we have concentrated on maintaining the speech harmonics in their original state and suppressing the noise elements involved in the noisy speech signal. The two stages that make up the suggested fundamental frequency extraction approach are producing the accumulated power spectrum of the speech signal and weighting it with the average magnitude difference function. As per the experiment results, the proposed technique appears to be better in noisy situations than other existing state-of-the-art methods such as Weighted Autocorrelation Function (WAF), PEFAC, and BaNa.\",\"PeriodicalId\":130361,\"journal\":{\"name\":\"International Journal of Information Technology and Computer Science\",\"volume\":\" 45\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Information Technology and Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5815/ijitcs.2024.03.05\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Technology and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5815/ijitcs.2024.03.05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项研究提出了一种更适合语音处理应用的高效思路,可在噪声条件下从语音信号中提取准确的音高。为此,我们提出了一种基频提取算法,该算法对输入信号的振幅和频率的非稳态变化具有容忍性。此外,我们使用累积功率谱代替功率谱,利用输入信号的较短子帧来降低语音信号的噪声特性。为了提高基频提取的准确性,我们集中精力保持语音谐波的原始状态,并抑制噪声语音信号中的噪声元素。所建议的基频提取方法分为两个阶段,一是生成语音信号的累积功率谱,二是用平均幅度差函数对其进行加权。实验结果表明,与加权自相关函数 (WAF)、PEFAC 和 BaNa 等其他现有的先进方法相比,建议的技术在噪声环境中的效果更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fundamental Frequency Extraction by Utilizing Accumulated Power Spectrum based Weighted Autocorrelation Function in Noisy Speech
This research suggests an efficient idea that is better suited for speech processing applications for retrieving the accurate pitch from speech signal in noisy conditions. For this objective, we present a fundamental frequency extraction algorithm and that is tolerant to the non-stationary changes of the amplitude and frequency of the input signal. Moreover, we use an accumulated power spectrum instead of power spectrum, which uses the shorter sub-frames of the input signal to reduce the noise characteristics of the speech signals. To increase the accuracy of the fundamental frequency extraction we have concentrated on maintaining the speech harmonics in their original state and suppressing the noise elements involved in the noisy speech signal. The two stages that make up the suggested fundamental frequency extraction approach are producing the accumulated power spectrum of the speech signal and weighting it with the average magnitude difference function. As per the experiment results, the proposed technique appears to be better in noisy situations than other existing state-of-the-art methods such as Weighted Autocorrelation Function (WAF), PEFAC, and BaNa.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信