利用集合多数投票分类器改进痴呆症预测

Q1 Decision Sciences
K. P. Muhammed Niyas, P. Thiyagarajan
{"title":"利用集合多数投票分类器改进痴呆症预测","authors":"K. P. Muhammed Niyas,&nbsp;P. Thiyagarajan","doi":"10.1007/s40745-024-00550-3","DOIUrl":null,"url":null,"abstract":"<div><p>Early detection of dementia patients in advance is a great concern for the physicians. That is why physicians make use of multi modal data to accomplish this. The baseline visit data of the patients are mainly utilized for this task. Modern Machine Learning techniques provide empirical evidence based approach to physicians for predicting the diagnosis status of the patients. This paper proposes an ensemble majority voting classifier approach for improving the detection of dementia using baseline visit data. The ensemble model consists of Logistic Regression, Random Forest, and Naive Bayes Classifiers. The proposed ensemble classifier reported with a BCA, F1-score of 92%, 0.92 for classifying demented and non-demented patients. Our results suggest that the prediction using the ensemble majority voting classifier improves the Balanced Classification Accuracy, F1-score for predicting dementia on the multi modal data of Open Access Series Imaging Dataset. The results using ensemble models are promising and highlight the importance of using ensemble models for dementia detection using multimodal data.</p></div>","PeriodicalId":36280,"journal":{"name":"Annals of Data Science","volume":"12 3","pages":"947 - 967"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving Dementia Prediction Using Ensemble Majority Voting Classifier\",\"authors\":\"K. P. Muhammed Niyas,&nbsp;P. Thiyagarajan\",\"doi\":\"10.1007/s40745-024-00550-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Early detection of dementia patients in advance is a great concern for the physicians. That is why physicians make use of multi modal data to accomplish this. The baseline visit data of the patients are mainly utilized for this task. Modern Machine Learning techniques provide empirical evidence based approach to physicians for predicting the diagnosis status of the patients. This paper proposes an ensemble majority voting classifier approach for improving the detection of dementia using baseline visit data. The ensemble model consists of Logistic Regression, Random Forest, and Naive Bayes Classifiers. The proposed ensemble classifier reported with a BCA, F1-score of 92%, 0.92 for classifying demented and non-demented patients. Our results suggest that the prediction using the ensemble majority voting classifier improves the Balanced Classification Accuracy, F1-score for predicting dementia on the multi modal data of Open Access Series Imaging Dataset. The results using ensemble models are promising and highlight the importance of using ensemble models for dementia detection using multimodal data.</p></div>\",\"PeriodicalId\":36280,\"journal\":{\"name\":\"Annals of Data Science\",\"volume\":\"12 3\",\"pages\":\"947 - 967\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40745-024-00550-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Decision Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Data Science","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40745-024-00550-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 0

摘要

提前发现痴呆症患者是医生非常关心的问题。这就是为什么医生利用多模态数据来完成这项工作。本任务主要利用患者的基线就诊数据。现代机器学习技术为医生预测患者的诊断状态提供了基于经验证据的方法。本文提出了一种集成多数投票分类器方法,用于改进使用基线访问数据的痴呆检测。集成模型由逻辑回归、随机森林和朴素贝叶斯分类器组成。所提出的集成分类器对痴呆和非痴呆患者的BCA, f1评分为92%,0.92。我们的研究结果表明,使用集成多数投票分类器的预测提高了在开放获取系列成像数据集的多模态数据上预测痴呆的平衡分类精度,f1分。使用集成模型的结果是有希望的,并强调了使用集成模型使用多模态数据进行痴呆检测的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Improving Dementia Prediction Using Ensemble  Majority Voting Classifier

Improving Dementia Prediction Using Ensemble Majority Voting Classifier

Early detection of dementia patients in advance is a great concern for the physicians. That is why physicians make use of multi modal data to accomplish this. The baseline visit data of the patients are mainly utilized for this task. Modern Machine Learning techniques provide empirical evidence based approach to physicians for predicting the diagnosis status of the patients. This paper proposes an ensemble majority voting classifier approach for improving the detection of dementia using baseline visit data. The ensemble model consists of Logistic Regression, Random Forest, and Naive Bayes Classifiers. The proposed ensemble classifier reported with a BCA, F1-score of 92%, 0.92 for classifying demented and non-demented patients. Our results suggest that the prediction using the ensemble majority voting classifier improves the Balanced Classification Accuracy, F1-score for predicting dementia on the multi modal data of Open Access Series Imaging Dataset. The results using ensemble models are promising and highlight the importance of using ensemble models for dementia detection using multimodal data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Data Science
Annals of Data Science Decision Sciences-Statistics, Probability and Uncertainty
CiteScore
6.50
自引率
0.00%
发文量
93
期刊介绍: Annals of Data Science (ADS) publishes cutting-edge research findings, experimental results and case studies of data science. Although Data Science is regarded as an interdisciplinary field of using mathematics, statistics, databases, data mining, high-performance computing, knowledge management and virtualization to discover knowledge from Big Data, it should have its own scientific contents, such as axioms, laws and rules, which are fundamentally important for experts in different fields to explore their own interests from Big Data. ADS encourages contributors to address such challenging problems at this exchange platform. At present, how to discover knowledge from heterogeneous data under Big Data environment needs to be addressed.     ADS is a series of volumes edited by either the editorial office or guest editors. Guest editors will be responsible for call-for-papers and the review process for high-quality contributions in their volumes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信