具有 $$\omega $$ 稳定理论的强可构造模型类的塔尔斯基-林登鲍姆代数

IF 0.3 4区 数学 Q1 Arts and Humanities
Mikhail Peretyat’kin
{"title":"具有 $$\\omega $$ 稳定理论的强可构造模型类的塔尔斯基-林登鲍姆代数","authors":"Mikhail Peretyat’kin","doi":"10.1007/s00153-024-00927-4","DOIUrl":null,"url":null,"abstract":"<div><p>We study the class of all strongly constructivizable models having <span>\\(\\omega \\)</span>-stable theories in a fixed finite rich signature. It is proved that the Tarski–Lindenbaum algebra of this class considered together with a Gödel numbering of the sentences is a Boolean <span>\\(\\Sigma ^1_1\\)</span>-algebra whose computable ultrafilters form a dense subset in the set of all ultrafilters; moreover, this algebra is universal with respect to the class of all Boolean <span>\\(\\Sigma ^1_1\\)</span>-algebras. This gives a characterization to the Tarski-Lindenbaum algebra of the class of all strongly constructivizable models with <span>\\(\\omega \\)</span>-stable theories.</p></div>","PeriodicalId":48853,"journal":{"name":"Archive for Mathematical Logic","volume":"64 1-2","pages":"67 - 78"},"PeriodicalIF":0.3000,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Tarski–Lindenbaum algebra of the class of strongly constructivizable models with \\\\(\\\\omega \\\\)-stable theories\",\"authors\":\"Mikhail Peretyat’kin\",\"doi\":\"10.1007/s00153-024-00927-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study the class of all strongly constructivizable models having <span>\\\\(\\\\omega \\\\)</span>-stable theories in a fixed finite rich signature. It is proved that the Tarski–Lindenbaum algebra of this class considered together with a Gödel numbering of the sentences is a Boolean <span>\\\\(\\\\Sigma ^1_1\\\\)</span>-algebra whose computable ultrafilters form a dense subset in the set of all ultrafilters; moreover, this algebra is universal with respect to the class of all Boolean <span>\\\\(\\\\Sigma ^1_1\\\\)</span>-algebras. This gives a characterization to the Tarski-Lindenbaum algebra of the class of all strongly constructivizable models with <span>\\\\(\\\\omega \\\\)</span>-stable theories.</p></div>\",\"PeriodicalId\":48853,\"journal\":{\"name\":\"Archive for Mathematical Logic\",\"volume\":\"64 1-2\",\"pages\":\"67 - 78\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2024-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive for Mathematical Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00153-024-00927-4\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Mathematical Logic","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00153-024-00927-4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了一类具有\(\omega \) -稳定理论的强可构造模型。证明了该类的Tarski-Lindenbaum代数是一个布尔\(\Sigma ^1_1\)代数,其可计算的超滤子在所有超滤子的集合中形成一个密集子集;而且,这个代数对于所有布尔\(\Sigma ^1_1\) -代数都是泛的。给出了具有\(\omega \) -稳定理论的所有强可构造模型类的Tarski-Lindenbaum代数的一个表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The Tarski–Lindenbaum algebra of the class of strongly constructivizable models with \(\omega \)-stable theories

The Tarski–Lindenbaum algebra of the class of strongly constructivizable models with \(\omega \)-stable theories

The Tarski–Lindenbaum algebra of the class of strongly constructivizable models with \(\omega \)-stable theories

We study the class of all strongly constructivizable models having \(\omega \)-stable theories in a fixed finite rich signature. It is proved that the Tarski–Lindenbaum algebra of this class considered together with a Gödel numbering of the sentences is a Boolean \(\Sigma ^1_1\)-algebra whose computable ultrafilters form a dense subset in the set of all ultrafilters; moreover, this algebra is universal with respect to the class of all Boolean \(\Sigma ^1_1\)-algebras. This gives a characterization to the Tarski-Lindenbaum algebra of the class of all strongly constructivizable models with \(\omega \)-stable theories.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archive for Mathematical Logic
Archive for Mathematical Logic MATHEMATICS-LOGIC
CiteScore
0.80
自引率
0.00%
发文量
45
审稿时长
6-12 weeks
期刊介绍: The journal publishes research papers and occasionally surveys or expositions on mathematical logic. Contributions are also welcomed from other related areas, such as theoretical computer science or philosophy, as long as the methods of mathematical logic play a significant role. The journal therefore addresses logicians and mathematicians, computer scientists, and philosophers who are interested in the applications of mathematical logic in their own field, as well as its interactions with other areas of research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信