Yongheng Zhao, Xuzhao Chai, Cuicui He, Yiming Lu, Pengwei Wen, Li Yan, Zhao Li
{"title":"利用模型预测控制和改进的鲸鱼优化器在城市环境中追踪多无人机目标","authors":"Yongheng Zhao, Xuzhao Chai, Cuicui He, Yiming Lu, Pengwei Wen, Li Yan, Zhao Li","doi":"10.1117/12.3032000","DOIUrl":null,"url":null,"abstract":"In this work, the method of Model Predictive Control (MPC) and Improved Whale Optimization Algorithm (IWOA) has been proposed to solve multiple unmanned aerial vehicles (UAVs) tracking a moving target in urban environment. The problem models are established, including the UAV model, target model, environment model and cost function model. Adopting MPC as a control framework for UAV target tracking, WOA is chosen as the solver of MPC. To further improve the optimized efficiency, the introduced strategies include bootstrap initialization strategy, double-difference variational strategy, adaptive weighting strategy and elite selection strategy. The compared experiments show the control method in this paper has better tracking performance and is a reliable technique for UAV tracking the moving target.","PeriodicalId":342847,"journal":{"name":"International Conference on Algorithms, Microchips and Network Applications","volume":"218 ","pages":"1317112 - 1317112-8"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-UAV tracking target in urban environments by model predictive control and improved whale optimizer\",\"authors\":\"Yongheng Zhao, Xuzhao Chai, Cuicui He, Yiming Lu, Pengwei Wen, Li Yan, Zhao Li\",\"doi\":\"10.1117/12.3032000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, the method of Model Predictive Control (MPC) and Improved Whale Optimization Algorithm (IWOA) has been proposed to solve multiple unmanned aerial vehicles (UAVs) tracking a moving target in urban environment. The problem models are established, including the UAV model, target model, environment model and cost function model. Adopting MPC as a control framework for UAV target tracking, WOA is chosen as the solver of MPC. To further improve the optimized efficiency, the introduced strategies include bootstrap initialization strategy, double-difference variational strategy, adaptive weighting strategy and elite selection strategy. The compared experiments show the control method in this paper has better tracking performance and is a reliable technique for UAV tracking the moving target.\",\"PeriodicalId\":342847,\"journal\":{\"name\":\"International Conference on Algorithms, Microchips and Network Applications\",\"volume\":\"218 \",\"pages\":\"1317112 - 1317112-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Algorithms, Microchips and Network Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.3032000\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Algorithms, Microchips and Network Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3032000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-UAV tracking target in urban environments by model predictive control and improved whale optimizer
In this work, the method of Model Predictive Control (MPC) and Improved Whale Optimization Algorithm (IWOA) has been proposed to solve multiple unmanned aerial vehicles (UAVs) tracking a moving target in urban environment. The problem models are established, including the UAV model, target model, environment model and cost function model. Adopting MPC as a control framework for UAV target tracking, WOA is chosen as the solver of MPC. To further improve the optimized efficiency, the introduced strategies include bootstrap initialization strategy, double-difference variational strategy, adaptive weighting strategy and elite selection strategy. The compared experiments show the control method in this paper has better tracking performance and is a reliable technique for UAV tracking the moving target.