矩阵因子化深度自动编码器的新型隐私保护方案

Q1 Mathematics
Pooja Choudhary, Kanwal Garg
{"title":"矩阵因子化深度自动编码器的新型隐私保护方案","authors":"Pooja Choudhary, Kanwal Garg","doi":"10.5815/ijcnis.2024.03.07","DOIUrl":null,"url":null,"abstract":"Data transport entails substantial security to avoid unauthorized snooping as data mining yields important and quite often sensitive information that must be and can be secured using one of the myriad Data Privacy Preservation methods. This study aspires to provide new knowledge to the study of protecting personal information. The key contributions of the work are an imputation method for filling in missing data before learning item profiles and the optimization of the Deep Auto-encoded NMF with a customizable learning rate. We used Bayesian inference to assess imputation for data with 13%, 26%, and 52% missing at random. By correcting any inherent biases, the results of decomposition problems may be enhanced. As the statistical analysis tool, MAPE is used. The proposed approach is evaluated on the Wiki dataset and the traffic dataset, against state-of-the-art techniques including BATF, BGCP, BCPF, and modified PARAFAC, all of which use a Bayesian Gaussian tensor factorization. Using this approach, the MAPE index is decreased for data which avails privacy safeguards than its corresponding original forms.","PeriodicalId":36488,"journal":{"name":"International Journal of Computer Network and Information Security","volume":" 41","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Privacy Preservation Scheme by Matrix Factorized Deep Autoencoder\",\"authors\":\"Pooja Choudhary, Kanwal Garg\",\"doi\":\"10.5815/ijcnis.2024.03.07\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data transport entails substantial security to avoid unauthorized snooping as data mining yields important and quite often sensitive information that must be and can be secured using one of the myriad Data Privacy Preservation methods. This study aspires to provide new knowledge to the study of protecting personal information. The key contributions of the work are an imputation method for filling in missing data before learning item profiles and the optimization of the Deep Auto-encoded NMF with a customizable learning rate. We used Bayesian inference to assess imputation for data with 13%, 26%, and 52% missing at random. By correcting any inherent biases, the results of decomposition problems may be enhanced. As the statistical analysis tool, MAPE is used. The proposed approach is evaluated on the Wiki dataset and the traffic dataset, against state-of-the-art techniques including BATF, BGCP, BCPF, and modified PARAFAC, all of which use a Bayesian Gaussian tensor factorization. Using this approach, the MAPE index is decreased for data which avails privacy safeguards than its corresponding original forms.\",\"PeriodicalId\":36488,\"journal\":{\"name\":\"International Journal of Computer Network and Information Security\",\"volume\":\" 41\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Network and Information Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5815/ijcnis.2024.03.07\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Network and Information Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5815/ijcnis.2024.03.07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

数据传输需要大量的安全措施,以避免未经授权的窥探,因为数据挖掘会产生重要的信息,而且往往是敏感信息,这些信息必须并可以使用无数种数据隐私保护方法中的一种来加以保护。本研究旨在为个人信息保护研究提供新知识。这项工作的主要贡献是在学习项目概况之前填补缺失数据的估算方法,以及优化具有可定制学习率的深度自动编码 NMF。我们使用贝叶斯推理评估了随机缺失率分别为 13%、26% 和 52% 的数据的估算。通过纠正任何固有偏差,分解问题的结果可能会得到增强。使用 MAPE 作为统计分析工具。我们在维基数据集和交通数据集上对所提出的方法进行了评估,并与 BATF、BGCP、BCPF 和修正 PARAFAC 等最先进的技术进行了对比,所有这些技术都使用了贝叶斯高斯张量因子化。与相应的原始形式相比,使用这种方法可降低隐私保护数据的 MAPE 指数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Privacy Preservation Scheme by Matrix Factorized Deep Autoencoder
Data transport entails substantial security to avoid unauthorized snooping as data mining yields important and quite often sensitive information that must be and can be secured using one of the myriad Data Privacy Preservation methods. This study aspires to provide new knowledge to the study of protecting personal information. The key contributions of the work are an imputation method for filling in missing data before learning item profiles and the optimization of the Deep Auto-encoded NMF with a customizable learning rate. We used Bayesian inference to assess imputation for data with 13%, 26%, and 52% missing at random. By correcting any inherent biases, the results of decomposition problems may be enhanced. As the statistical analysis tool, MAPE is used. The proposed approach is evaluated on the Wiki dataset and the traffic dataset, against state-of-the-art techniques including BATF, BGCP, BCPF, and modified PARAFAC, all of which use a Bayesian Gaussian tensor factorization. Using this approach, the MAPE index is decreased for data which avails privacy safeguards than its corresponding original forms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
0.00%
发文量
33
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信