Farzane Aminmansour, Taher Jafferjee, Ehsan Imani, Erin J. Talvitie, Michael Bowling, Martha White
{"title":"通过多步骤前置模型缓解动态规划中的价值幻觉","authors":"Farzane Aminmansour, Taher Jafferjee, Ehsan Imani, Erin J. Talvitie, Michael Bowling, Martha White","doi":"10.1613/jair.1.15155","DOIUrl":null,"url":null,"abstract":"Dyna-style reinforcement learning (RL) agents improve sample efficiency over model-free RL agents by updating the value function with simulated experience generated by an environment model. However, it is often difficult to learn accurate models of environment dynamics, and even small errors may result in failure of Dyna agents. In this paper, we highlight that one potential cause of that failure is bootstrapping off of the values of simulated states, and introduce a new Dyna algorithm to avoid this failure. We discuss a design space of Dyna algorithms, based on using successor or predecessor models---simulating forwards or backwards---and using one-step or multi-step updates. Three of the variants have been explored, but surprisingly the fourth variant has not: using predecessor models with multi-step updates. We present the \\emph{Hallucinated Value Hypothesis} (HVH): updating the values of real states towards values of simulated states can result in misleading action values which adversely affect the control policy. We discuss and evaluate all four variants of Dyna amongst which three update real states toward simulated states --- so potentially toward hallucinated values --- and our proposed approach, which does not. The experimental results provide evidence for the HVH, and suggest that using predecessor models with multi-step updates is a fruitful direction toward developing Dyna algorithms that are more robust to model error.","PeriodicalId":54877,"journal":{"name":"Journal of Artificial Intelligence Research","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mitigating Value Hallucination in Dyna-Style Planning via Multistep Predecessor Models\",\"authors\":\"Farzane Aminmansour, Taher Jafferjee, Ehsan Imani, Erin J. Talvitie, Michael Bowling, Martha White\",\"doi\":\"10.1613/jair.1.15155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dyna-style reinforcement learning (RL) agents improve sample efficiency over model-free RL agents by updating the value function with simulated experience generated by an environment model. However, it is often difficult to learn accurate models of environment dynamics, and even small errors may result in failure of Dyna agents. In this paper, we highlight that one potential cause of that failure is bootstrapping off of the values of simulated states, and introduce a new Dyna algorithm to avoid this failure. We discuss a design space of Dyna algorithms, based on using successor or predecessor models---simulating forwards or backwards---and using one-step or multi-step updates. Three of the variants have been explored, but surprisingly the fourth variant has not: using predecessor models with multi-step updates. We present the \\\\emph{Hallucinated Value Hypothesis} (HVH): updating the values of real states towards values of simulated states can result in misleading action values which adversely affect the control policy. We discuss and evaluate all four variants of Dyna amongst which three update real states toward simulated states --- so potentially toward hallucinated values --- and our proposed approach, which does not. The experimental results provide evidence for the HVH, and suggest that using predecessor models with multi-step updates is a fruitful direction toward developing Dyna algorithms that are more robust to model error.\",\"PeriodicalId\":54877,\"journal\":{\"name\":\"Journal of Artificial Intelligence Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Artificial Intelligence Research\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1613/jair.1.15155\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence Research","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1613/jair.1.15155","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Mitigating Value Hallucination in Dyna-Style Planning via Multistep Predecessor Models
Dyna-style reinforcement learning (RL) agents improve sample efficiency over model-free RL agents by updating the value function with simulated experience generated by an environment model. However, it is often difficult to learn accurate models of environment dynamics, and even small errors may result in failure of Dyna agents. In this paper, we highlight that one potential cause of that failure is bootstrapping off of the values of simulated states, and introduce a new Dyna algorithm to avoid this failure. We discuss a design space of Dyna algorithms, based on using successor or predecessor models---simulating forwards or backwards---and using one-step or multi-step updates. Three of the variants have been explored, but surprisingly the fourth variant has not: using predecessor models with multi-step updates. We present the \emph{Hallucinated Value Hypothesis} (HVH): updating the values of real states towards values of simulated states can result in misleading action values which adversely affect the control policy. We discuss and evaluate all four variants of Dyna amongst which three update real states toward simulated states --- so potentially toward hallucinated values --- and our proposed approach, which does not. The experimental results provide evidence for the HVH, and suggest that using predecessor models with multi-step updates is a fruitful direction toward developing Dyna algorithms that are more robust to model error.
期刊介绍:
JAIR(ISSN 1076 - 9757) covers all areas of artificial intelligence (AI), publishing refereed research articles, survey articles, and technical notes. Established in 1993 as one of the first electronic scientific journals, JAIR is indexed by INSPEC, Science Citation Index, and MathSciNet. JAIR reviews papers within approximately three months of submission and publishes accepted articles on the internet immediately upon receiving the final versions. JAIR articles are published for free distribution on the internet by the AI Access Foundation, and for purchase in bound volumes by AAAI Press.