Myriam Álvarez-Yaulema, María Ponce-Valle, Jhonny Alban-Alcivar, Luis Zambrano-Salazar
{"title":"大学生学业成绩预测统计模型综述","authors":"Myriam Álvarez-Yaulema, María Ponce-Valle, Jhonny Alban-Alcivar, Luis Zambrano-Salazar","doi":"10.56048/mqr20225.8.2.2024.3806-3823","DOIUrl":null,"url":null,"abstract":"La predicción del rendimiento académico en estudiantes universitarios ha despertado un interés creciente, dado su impacto significativo en la formulación de estrategias pedagógicas y políticas educativas. Con los avances en técnicas estadísticas y el aprendizaje automático, se han creado diversos modelos que permiten prever el desempeño académico, identificando factores y patrones de comportamiento asociados al éxito estudiantil. Los objetivos centrales, en primer lugar, realizar una evaluación y comparación de las metodologías estadísticas y de aprendizaje automático más frecuentemente empleadas en la predicción del rendimiento académico, con el objetivo de discernir sus puntos fuertes y áreas de mejora. En segundo lugar, examinar la exactitud y relevancia de estos modelos en diversos entornos educativos y grupos estudiantiles. Se realizó una revisión descriptiva para desempeñar una comprensión exhaustiva de la investigación relacionada, que proporciona una visión panorámica y detallada de los modelos estadísticos utilizados para pronosticar el desempeño académico en estudiantes. Esta revisión permitió identificar y analizar las características, fortalezas y limitaciones de cada modelo, así como también su aplicabilidad en diferentes contextos educativos y poblaciones estudiantiles. se han alcanzado varios hallazgos significativos. Se ha observado una amplia variedad de metodologías estadísticas y de aprendizaje automático empleadas en esta tarea, que van desde modelos lineales hasta algoritmos más complejos de aprendizaje profundo. Esta diversidad destaca la importancia de realizar una evaluación minuciosa y comparativa de estas técnicas para identificar tanto sus fortalezas como sus áreas de mejora, especialmente en lo que respecta a su precisión y su aplicabilidad en distintos contextos educativos. \n ","PeriodicalId":506880,"journal":{"name":"MQRInvestigar","volume":" 36","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revisión de modelos estadísticos para pronosticar el desempeño académico en estudiantes universitarios\",\"authors\":\"Myriam Álvarez-Yaulema, María Ponce-Valle, Jhonny Alban-Alcivar, Luis Zambrano-Salazar\",\"doi\":\"10.56048/mqr20225.8.2.2024.3806-3823\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"La predicción del rendimiento académico en estudiantes universitarios ha despertado un interés creciente, dado su impacto significativo en la formulación de estrategias pedagógicas y políticas educativas. Con los avances en técnicas estadísticas y el aprendizaje automático, se han creado diversos modelos que permiten prever el desempeño académico, identificando factores y patrones de comportamiento asociados al éxito estudiantil. Los objetivos centrales, en primer lugar, realizar una evaluación y comparación de las metodologías estadísticas y de aprendizaje automático más frecuentemente empleadas en la predicción del rendimiento académico, con el objetivo de discernir sus puntos fuertes y áreas de mejora. En segundo lugar, examinar la exactitud y relevancia de estos modelos en diversos entornos educativos y grupos estudiantiles. Se realizó una revisión descriptiva para desempeñar una comprensión exhaustiva de la investigación relacionada, que proporciona una visión panorámica y detallada de los modelos estadísticos utilizados para pronosticar el desempeño académico en estudiantes. Esta revisión permitió identificar y analizar las características, fortalezas y limitaciones de cada modelo, así como también su aplicabilidad en diferentes contextos educativos y poblaciones estudiantiles. se han alcanzado varios hallazgos significativos. Se ha observado una amplia variedad de metodologías estadísticas y de aprendizaje automático empleadas en esta tarea, que van desde modelos lineales hasta algoritmos más complejos de aprendizaje profundo. Esta diversidad destaca la importancia de realizar una evaluación minuciosa y comparativa de estas técnicas para identificar tanto sus fortalezas como sus áreas de mejora, especialmente en lo que respecta a su precisión y su aplicabilidad en distintos contextos educativos. \\n \",\"PeriodicalId\":506880,\"journal\":{\"name\":\"MQRInvestigar\",\"volume\":\" 36\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MQRInvestigar\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56048/mqr20225.8.2.2024.3806-3823\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MQRInvestigar","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56048/mqr20225.8.2.2024.3806-3823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Revisión de modelos estadísticos para pronosticar el desempeño académico en estudiantes universitarios
La predicción del rendimiento académico en estudiantes universitarios ha despertado un interés creciente, dado su impacto significativo en la formulación de estrategias pedagógicas y políticas educativas. Con los avances en técnicas estadísticas y el aprendizaje automático, se han creado diversos modelos que permiten prever el desempeño académico, identificando factores y patrones de comportamiento asociados al éxito estudiantil. Los objetivos centrales, en primer lugar, realizar una evaluación y comparación de las metodologías estadísticas y de aprendizaje automático más frecuentemente empleadas en la predicción del rendimiento académico, con el objetivo de discernir sus puntos fuertes y áreas de mejora. En segundo lugar, examinar la exactitud y relevancia de estos modelos en diversos entornos educativos y grupos estudiantiles. Se realizó una revisión descriptiva para desempeñar una comprensión exhaustiva de la investigación relacionada, que proporciona una visión panorámica y detallada de los modelos estadísticos utilizados para pronosticar el desempeño académico en estudiantes. Esta revisión permitió identificar y analizar las características, fortalezas y limitaciones de cada modelo, así como también su aplicabilidad en diferentes contextos educativos y poblaciones estudiantiles. se han alcanzado varios hallazgos significativos. Se ha observado una amplia variedad de metodologías estadísticas y de aprendizaje automático empleadas en esta tarea, que van desde modelos lineales hasta algoritmos más complejos de aprendizaje profundo. Esta diversidad destaca la importancia de realizar una evaluación minuciosa y comparativa de estas técnicas para identificar tanto sus fortalezas como sus áreas de mejora, especialmente en lo que respecta a su precisión y su aplicabilidad en distintos contextos educativos.