镍 xix 中 3C 和 3D 软 X 射线跃迁的自然线宽测量结果

IF 2.6 2区 物理与天体物理 Q2 OPTICS
Chintan Shah, S. Kühn, Sonja Bernitt, René Steinbrügge, Moto Togawa, Lukas Berger, Jen Buck, Moritz Hoesch, J. Seltmann, Mikhail G. Kozlov, S. Porsev, Ming Feng Gu, F. S. Porter, Thomas Pfeifer, M. A. Leutenegger, Charles Cheung, M. S. Safronova, José R. Crespo López-Urrutia
{"title":"镍 xix 中 3C 和 3D 软 X 射线跃迁的自然线宽测量结果","authors":"Chintan Shah, S. Kühn, Sonja Bernitt, René Steinbrügge, Moto Togawa, Lukas Berger, Jen Buck, Moritz Hoesch, J. Seltmann, Mikhail G. Kozlov, S. Porsev, Ming Feng Gu, F. S. Porter, Thomas Pfeifer, M. A. Leutenegger, Charles Cheung, M. S. Safronova, José R. Crespo López-Urrutia","doi":"10.1103/physreva.109.063108","DOIUrl":null,"url":null,"abstract":"<jats:p>We used the monochromatic soft-x-ray beamline P04 at the synchrotron-radiation facility PETRA III to resonantly excite the strongest <a:math xmlns:a=\"http://www.w3.org/1998/Math/MathML\"><a:mrow><a:mn>2</a:mn><a:mi>p</a:mi><a:mtext>−</a:mtext><a:mn>3</a:mn><a:mi>d</a:mi></a:mrow></a:math> transitions in neonlike <b:math xmlns:b=\"http://www.w3.org/1998/Math/MathML\"><b:mi>Ni</b:mi><b:mspace width=\"0.28em\"/></b:math> ions, <d:math xmlns:d=\"http://www.w3.org/1998/Math/MathML\"><d:mrow><d:msub><d:mrow><d:mo>[</d:mo><d:mn>2</d:mn><d:msup><d:mi>p</d:mi><d:mn>6</d:mn></d:msup><d:mo>]</d:mo></d:mrow><d:mrow><d:mi>J</d:mi><d:mo>=</d:mo><d:mn>0</d:mn></d:mrow></d:msub><d:mo>→</d:mo><d:msub><d:mrow><d:mo>[</d:mo><d:msub><d:mrow><d:mo>(</d:mo><d:mn>2</d:mn><d:msup><d:mi>p</d:mi><d:mn>5</d:mn></d:msup><d:mo>)</d:mo></d:mrow><d:mrow><d:mn>1</d:mn><d:mo>/</d:mo><d:mn>2</d:mn></d:mrow></d:msub><d:mspace width=\"0.16em\"/><d:mn>3</d:mn><d:msub><d:mi>d</d:mi><d:mrow><d:mn>3</d:mn><d:mo>/</d:mo><d:mn>2</d:mn></d:mrow></d:msub><d:mo>]</d:mo></d:mrow><d:mrow><d:mi>J</d:mi><d:mo>=</d:mo><d:mn>1</d:mn></d:mrow></d:msub></d:mrow></d:math> and <f:math xmlns:f=\"http://www.w3.org/1998/Math/MathML\"><f:mrow><f:msub><f:mrow><f:mo>[</f:mo><f:mn>2</f:mn><f:msup><f:mi>p</f:mi><f:mn>6</f:mn></f:msup><f:mo>]</f:mo></f:mrow><f:mrow><f:mi>J</f:mi><f:mo>=</f:mo><f:mn>0</f:mn></f:mrow></f:msub><f:mo>→</f:mo><f:msub><f:mrow><f:mo>[</f:mo><f:msub><f:mrow><f:mo>(</f:mo><f:mn>2</f:mn><f:msup><f:mi>p</f:mi><f:mn>5</f:mn></f:msup><f:mo>)</f:mo></f:mrow><f:mrow><f:mn>3</f:mn><f:mo>/</f:mo><f:mn>2</f:mn></f:mrow></f:msub><f:mspace width=\"0.16em\"/><f:mn>3</f:mn><f:msub><f:mi>d</f:mi><f:mrow><f:mn>5</f:mn><f:mo>/</f:mo><f:mn>2</f:mn></f:mrow></f:msub><f:mo>]</f:mo></f:mrow><f:mrow><f:mi>J</f:mi><f:mo>=</f:mo><f:mn>1</f:mn></f:mrow></f:msub></f:mrow></f:math>, respectively dubbed <h:math xmlns:h=\"http://www.w3.org/1998/Math/MathML\"><h:mrow><h:mn>3</h:mn><h:mi>C</h:mi></h:mrow></h:math> and <i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\"><i:mrow><i:mn>3</i:mn><i:mi>D</i:mi></i:mrow></i:math>, achieving a resolving power of 15 000 and signal-to-background ratio of 30. We obtain their natural linewidths, with an accuracy of better than 10%, as well as the oscillator-strength ratio <j:math xmlns:j=\"http://www.w3.org/1998/Math/MathML\"><j:mrow><j:mi>f</j:mi><j:mo>(</j:mo><j:mn>3</j:mn><j:mi>C</j:mi><j:mo>)</j:mo><j:mo>/</j:mo><j:mi>f</j:mi><j:mo>(</j:mo><j:mn>3</j:mn><j:mi>D</j:mi><j:mo>)</j:mo><j:mo>=</j:mo><j:mn>2.51</j:mn><j:mo>(</j:mo><j:mn>11</j:mn><j:mo>)</j:mo></j:mrow></j:math> from analysis of the resonant fluorescence spectra. These results agree with those of previous experiments, earlier predictions, and our own advanced calculations.</jats:p>\n <jats:sec>\n <jats:title/>\n <jats:supplementary-material>\n <jats:permissions>\n <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement>\n <jats:copyright-year>2024</jats:copyright-year>\n </jats:permissions>\n </jats:supplementary-material>\n </jats:sec>","PeriodicalId":48702,"journal":{"name":"Physical Review a","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Natural-linewidth measurements of the \\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"><mml:mn>3</mml:mn><mml:mi>C</mml:mi></mml:math>\\n and \\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"><mml:mn>3</mml:mn><mml:mi>D</mml:mi></mml:math>\\n soft-x-ray transitions in Ni xix\",\"authors\":\"Chintan Shah, S. Kühn, Sonja Bernitt, René Steinbrügge, Moto Togawa, Lukas Berger, Jen Buck, Moritz Hoesch, J. Seltmann, Mikhail G. Kozlov, S. Porsev, Ming Feng Gu, F. S. Porter, Thomas Pfeifer, M. A. Leutenegger, Charles Cheung, M. S. Safronova, José R. Crespo López-Urrutia\",\"doi\":\"10.1103/physreva.109.063108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:p>We used the monochromatic soft-x-ray beamline P04 at the synchrotron-radiation facility PETRA III to resonantly excite the strongest <a:math xmlns:a=\\\"http://www.w3.org/1998/Math/MathML\\\"><a:mrow><a:mn>2</a:mn><a:mi>p</a:mi><a:mtext>−</a:mtext><a:mn>3</a:mn><a:mi>d</a:mi></a:mrow></a:math> transitions in neonlike <b:math xmlns:b=\\\"http://www.w3.org/1998/Math/MathML\\\"><b:mi>Ni</b:mi><b:mspace width=\\\"0.28em\\\"/></b:math> ions, <d:math xmlns:d=\\\"http://www.w3.org/1998/Math/MathML\\\"><d:mrow><d:msub><d:mrow><d:mo>[</d:mo><d:mn>2</d:mn><d:msup><d:mi>p</d:mi><d:mn>6</d:mn></d:msup><d:mo>]</d:mo></d:mrow><d:mrow><d:mi>J</d:mi><d:mo>=</d:mo><d:mn>0</d:mn></d:mrow></d:msub><d:mo>→</d:mo><d:msub><d:mrow><d:mo>[</d:mo><d:msub><d:mrow><d:mo>(</d:mo><d:mn>2</d:mn><d:msup><d:mi>p</d:mi><d:mn>5</d:mn></d:msup><d:mo>)</d:mo></d:mrow><d:mrow><d:mn>1</d:mn><d:mo>/</d:mo><d:mn>2</d:mn></d:mrow></d:msub><d:mspace width=\\\"0.16em\\\"/><d:mn>3</d:mn><d:msub><d:mi>d</d:mi><d:mrow><d:mn>3</d:mn><d:mo>/</d:mo><d:mn>2</d:mn></d:mrow></d:msub><d:mo>]</d:mo></d:mrow><d:mrow><d:mi>J</d:mi><d:mo>=</d:mo><d:mn>1</d:mn></d:mrow></d:msub></d:mrow></d:math> and <f:math xmlns:f=\\\"http://www.w3.org/1998/Math/MathML\\\"><f:mrow><f:msub><f:mrow><f:mo>[</f:mo><f:mn>2</f:mn><f:msup><f:mi>p</f:mi><f:mn>6</f:mn></f:msup><f:mo>]</f:mo></f:mrow><f:mrow><f:mi>J</f:mi><f:mo>=</f:mo><f:mn>0</f:mn></f:mrow></f:msub><f:mo>→</f:mo><f:msub><f:mrow><f:mo>[</f:mo><f:msub><f:mrow><f:mo>(</f:mo><f:mn>2</f:mn><f:msup><f:mi>p</f:mi><f:mn>5</f:mn></f:msup><f:mo>)</f:mo></f:mrow><f:mrow><f:mn>3</f:mn><f:mo>/</f:mo><f:mn>2</f:mn></f:mrow></f:msub><f:mspace width=\\\"0.16em\\\"/><f:mn>3</f:mn><f:msub><f:mi>d</f:mi><f:mrow><f:mn>5</f:mn><f:mo>/</f:mo><f:mn>2</f:mn></f:mrow></f:msub><f:mo>]</f:mo></f:mrow><f:mrow><f:mi>J</f:mi><f:mo>=</f:mo><f:mn>1</f:mn></f:mrow></f:msub></f:mrow></f:math>, respectively dubbed <h:math xmlns:h=\\\"http://www.w3.org/1998/Math/MathML\\\"><h:mrow><h:mn>3</h:mn><h:mi>C</h:mi></h:mrow></h:math> and <i:math xmlns:i=\\\"http://www.w3.org/1998/Math/MathML\\\"><i:mrow><i:mn>3</i:mn><i:mi>D</i:mi></i:mrow></i:math>, achieving a resolving power of 15 000 and signal-to-background ratio of 30. We obtain their natural linewidths, with an accuracy of better than 10%, as well as the oscillator-strength ratio <j:math xmlns:j=\\\"http://www.w3.org/1998/Math/MathML\\\"><j:mrow><j:mi>f</j:mi><j:mo>(</j:mo><j:mn>3</j:mn><j:mi>C</j:mi><j:mo>)</j:mo><j:mo>/</j:mo><j:mi>f</j:mi><j:mo>(</j:mo><j:mn>3</j:mn><j:mi>D</j:mi><j:mo>)</j:mo><j:mo>=</j:mo><j:mn>2.51</j:mn><j:mo>(</j:mo><j:mn>11</j:mn><j:mo>)</j:mo></j:mrow></j:math> from analysis of the resonant fluorescence spectra. These results agree with those of previous experiments, earlier predictions, and our own advanced calculations.</jats:p>\\n <jats:sec>\\n <jats:title/>\\n <jats:supplementary-material>\\n <jats:permissions>\\n <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement>\\n <jats:copyright-year>2024</jats:copyright-year>\\n </jats:permissions>\\n </jats:supplementary-material>\\n </jats:sec>\",\"PeriodicalId\":48702,\"journal\":{\"name\":\"Physical Review a\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review a\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physreva.109.063108\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review a","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physreva.109.063108","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

我们利用同步辐射设施 PETRA III 的单色软 X 射线光束线 P04 共振激发了氖型镍离子中最强的 2p-3d 转变:[2p6]J=0→[(2p5)1/23d3/2]J=1 和 [2p6]J=0→[(2p5)3/23d5/2]J=1 (分别称为 3C 和 3D ),分辨力达到 15 000,信噪比为 30。通过分析共振荧光光谱,我们得到了它们的自然线宽(精确度优于 10%)以及振荡器强度比 f(3C)/f(3D)=2.51(11)。这些结果与之前的实验、早期预测以及我们自己的高级计算结果一致。 美国物理学会出版 2024
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Natural-linewidth measurements of the 3C and 3D soft-x-ray transitions in Ni xix
We used the monochromatic soft-x-ray beamline P04 at the synchrotron-radiation facility PETRA III to resonantly excite the strongest 2p3d transitions in neonlike Ni ions, [2p6]J=0[(2p5)1/23d3/2]J=1 and [2p6]J=0[(2p5)3/23d5/2]J=1, respectively dubbed 3C and 3D, achieving a resolving power of 15 000 and signal-to-background ratio of 30. We obtain their natural linewidths, with an accuracy of better than 10%, as well as the oscillator-strength ratio f(3C)/f(3D)=2.51(11) from analysis of the resonant fluorescence spectra. These results agree with those of previous experiments, earlier predictions, and our own advanced calculations. Published by the American Physical Society 2024
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review a
Physical Review a OPTICSPHYSICS, ATOMIC, MOLECULAR & CHEMICA-PHYSICS, ATOMIC, MOLECULAR & CHEMICAL
CiteScore
5.30
自引率
24.10%
发文量
2086
期刊介绍: Physical Review A (PRA) publishes important developments in the rapidly evolving areas of atomic, molecular, and optical (AMO) physics, quantum information, and related fundamental concepts. PRA covers atomic, molecular, and optical physics, foundations of quantum mechanics, and quantum information, including: -Fundamental concepts -Quantum information -Atomic and molecular structure and dynamics; high-precision measurement -Atomic and molecular collisions and interactions -Atomic and molecular processes in external fields, including interactions with strong fields and short pulses -Matter waves and collective properties of cold atoms and molecules -Quantum optics, physics of lasers, nonlinear optics, and classical optics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信