二维纳维-斯托克斯方程的多旋涡和吸引维下限

Pub Date : 2024-06-10 DOI:10.1134/S1064562424702016
A. G. Kostianko, A. A. Ilyin, D. Stone, S. V. Zelik
{"title":"二维纳维-斯托克斯方程的多旋涡和吸引维下限","authors":"A. G. Kostianko,&nbsp;A. A. Ilyin,&nbsp;D. Stone,&nbsp;S. V. Zelik","doi":"10.1134/S1064562424702016","DOIUrl":null,"url":null,"abstract":"<p>A new method for obtaining lower bounds for the dimension of attractors for the Navier–Stokes equations is presented, which does not use Kolmogorov flows. By applying this method, exact estimates of the dimension are obtained for the case of equations on a plane with Ekman damping. Similar estimates were previously known only for the case of periodic boundary conditions. In addition, similar lower bounds are obtained for the classical Navier–Stokes system in a two-dimensional bounded domain with Dirichlet boundary conditions.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-vortices and Lower Bounds for the Attractor Dimension of 2D Navier–Stokes Equations\",\"authors\":\"A. G. Kostianko,&nbsp;A. A. Ilyin,&nbsp;D. Stone,&nbsp;S. V. Zelik\",\"doi\":\"10.1134/S1064562424702016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A new method for obtaining lower bounds for the dimension of attractors for the Navier–Stokes equations is presented, which does not use Kolmogorov flows. By applying this method, exact estimates of the dimension are obtained for the case of equations on a plane with Ekman damping. Similar estimates were previously known only for the case of periodic boundary conditions. In addition, similar lower bounds are obtained for the classical Navier–Stokes system in a two-dimensional bounded domain with Dirichlet boundary conditions.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1064562424702016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S1064562424702016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种获取纳维-斯托克斯方程吸引子维度下限的新方法,该方法不使用柯尔莫哥洛夫流。通过应用这种方法,可以获得具有 Ekman 阻尼的平面上方程的维数的精确估计值。以前只有在周期性边界条件的情况下才知道类似的估计值。此外,对于二维有界域中的经典纳维-斯托克斯系统,我们也获得了类似的下限,该系统具有迪里夏特边界条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Multi-vortices and Lower Bounds for the Attractor Dimension of 2D Navier–Stokes Equations

A new method for obtaining lower bounds for the dimension of attractors for the Navier–Stokes equations is presented, which does not use Kolmogorov flows. By applying this method, exact estimates of the dimension are obtained for the case of equations on a plane with Ekman damping. Similar estimates were previously known only for the case of periodic boundary conditions. In addition, similar lower bounds are obtained for the classical Navier–Stokes system in a two-dimensional bounded domain with Dirichlet boundary conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信