从科学出版物文本中自动提取知识的任务、方法和工具比较评述

S. N. Ushakov, A. O. Saveliev
{"title":"从科学出版物文本中自动提取知识的任务、方法和工具比较评述","authors":"S. N. Ushakov, A. O. Saveliev","doi":"10.17587/it.30.291-299","DOIUrl":null,"url":null,"abstract":"The purpose of this work is to review the existing technologies for automated knowledge extraction from scientific publications. The main tasks include an analysis of existing methods for automated knowledge extraction, as well as an overview of various software tools used to solve this problem. The article presents a description of the main approaches to automated knowledge extraction, such as machine learning, natural language processing and the development of various methodologies for building knowledge graphs. An analysis of existing sources showed that the main problems associated with automated knowledge extraction are the need to create a large amount of labeled data, the processing of complex structured data, and the need to develop new algorithms for working with such data.","PeriodicalId":504905,"journal":{"name":"Informacionnye Tehnologii","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative Review of Tasks, Approaches and Tools for Automated Knowledge Extraction from the Texts of Scientific Publications\",\"authors\":\"S. N. Ushakov, A. O. Saveliev\",\"doi\":\"10.17587/it.30.291-299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this work is to review the existing technologies for automated knowledge extraction from scientific publications. The main tasks include an analysis of existing methods for automated knowledge extraction, as well as an overview of various software tools used to solve this problem. The article presents a description of the main approaches to automated knowledge extraction, such as machine learning, natural language processing and the development of various methodologies for building knowledge graphs. An analysis of existing sources showed that the main problems associated with automated knowledge extraction are the need to create a large amount of labeled data, the processing of complex structured data, and the need to develop new algorithms for working with such data.\",\"PeriodicalId\":504905,\"journal\":{\"name\":\"Informacionnye Tehnologii\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Informacionnye Tehnologii\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17587/it.30.291-299\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informacionnye Tehnologii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17587/it.30.291-299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项工作的目的是回顾从科学出版物中自动提取知识的现有技术。主要任务包括分析现有的自动知识提取方法,以及概述用于解决这一问题的各种软件工具。文章介绍了自动知识提取的主要方法,如机器学习、自然语言处理和构建知识图谱的各种方法的开发。对现有资料的分析表明,与自动知识提取相关的主要问题是需要创建大量标注数据、处理复杂的结构化数据,以及需要开发处理此类数据的新算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparative Review of Tasks, Approaches and Tools for Automated Knowledge Extraction from the Texts of Scientific Publications
The purpose of this work is to review the existing technologies for automated knowledge extraction from scientific publications. The main tasks include an analysis of existing methods for automated knowledge extraction, as well as an overview of various software tools used to solve this problem. The article presents a description of the main approaches to automated knowledge extraction, such as machine learning, natural language processing and the development of various methodologies for building knowledge graphs. An analysis of existing sources showed that the main problems associated with automated knowledge extraction are the need to create a large amount of labeled data, the processing of complex structured data, and the need to develop new algorithms for working with such data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信