伪凸集合上定义的拉顿变换的反演问题

Pub Date : 2024-06-10 DOI:10.1134/S1064562424702004
D. S. Anikonov, D. S. Konovalova
{"title":"伪凸集合上定义的拉顿变换的反演问题","authors":"D. S. Anikonov,&nbsp;D. S. Konovalova","doi":"10.1134/S1064562424702004","DOIUrl":null,"url":null,"abstract":"<p>Some questions concerning the inversion of the classical and generalized integral Radon transforms are discussed. The main issue is to determine information about the integrand if the values of some integrals are known. A feature of this work is that a function is integrated over hyperplanes in a finite-dimensional Euclidean space and the integrands depend not only on the variables of integration, but also on some of the variables characterizing the hyperplanes. The independent variables describing the known integrals are fewer than those in the unknown integrand. We consider discontinuous integrands defined on specifically introduced pseudoconvex sets. A Stefan-type problem of finding discontinuity surfaces of the integrand is posed. Formulas for solving the problem under study are derived by applying special integro-differential operators to known data.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inversion Problem for Radon Transforms Defined on Pseudoconvex Sets\",\"authors\":\"D. S. Anikonov,&nbsp;D. S. Konovalova\",\"doi\":\"10.1134/S1064562424702004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Some questions concerning the inversion of the classical and generalized integral Radon transforms are discussed. The main issue is to determine information about the integrand if the values of some integrals are known. A feature of this work is that a function is integrated over hyperplanes in a finite-dimensional Euclidean space and the integrands depend not only on the variables of integration, but also on some of the variables characterizing the hyperplanes. The independent variables describing the known integrals are fewer than those in the unknown integrand. We consider discontinuous integrands defined on specifically introduced pseudoconvex sets. A Stefan-type problem of finding discontinuity surfaces of the integrand is posed. Formulas for solving the problem under study are derived by applying special integro-differential operators to known data.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1064562424702004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S1064562424702004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

讨论了有关经典和广义积分拉顿变换反演的一些问题。主要问题是,如果已知某些积分的值,如何确定有关积分的信息。这项工作的一个特点是,函数在有限维欧几里得空间的超平面上积分,而积分项不仅取决于积分变量,还取决于表征超平面的一些变量。描述已知积分的自变量比未知积分的自变量少。我们考虑的是定义在专门引入的伪凸集合上的不连续积分。我们提出了一个寻找积分不连续面的斯蒂芬型问题。通过对已知数据应用特殊的积分微分算子,得出了解决所研究问题的公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Inversion Problem for Radon Transforms Defined on Pseudoconvex Sets

Some questions concerning the inversion of the classical and generalized integral Radon transforms are discussed. The main issue is to determine information about the integrand if the values of some integrals are known. A feature of this work is that a function is integrated over hyperplanes in a finite-dimensional Euclidean space and the integrands depend not only on the variables of integration, but also on some of the variables characterizing the hyperplanes. The independent variables describing the known integrals are fewer than those in the unknown integrand. We consider discontinuous integrands defined on specifically introduced pseudoconvex sets. A Stefan-type problem of finding discontinuity surfaces of the integrand is posed. Formulas for solving the problem under study are derived by applying special integro-differential operators to known data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信