{"title":"利用时间序列遥感图像和深度学习模型精确绘制沿海湿地地图","authors":"Lina Ke, Yao Lu, Qin Tan, Yu Zhao, Quanming Wang","doi":"10.3389/ffgc.2024.1409985","DOIUrl":null,"url":null,"abstract":"Mapping coastal wetlands' spatial distribution and spatiotemporal dynamics is crucial for ecological conservation and restoration efforts. However, the high hydrological dynamics and steep environmental gradients pose challenges for precise mapping. This study developed a new method for mapping coastal wetlands using time-series remote sensing images and a deep learning model. Precise mapping and change analysis were conducted in the Liaohe Estuary Reserve in 2017 and 2022. The results demonstrated the superiority of Temporal Optimize Features (TOFs) in feature importance and classification accuracy. Incorporating TOFs into the ResNet model effectively combined temporal and spatial information, enhancing coastal wetland mapping accuracy. Comparative analysis revealed ecological restoration trends, emphasizing artificial restoration's predominant role in salt marsh vegetation rehabilitation. These findings provide essential technical support for coastal wetland ecosystem monitoring and contribute to the study of sustainability under global climate change.","PeriodicalId":507254,"journal":{"name":"Frontiers in Forests and Global Change","volume":" 854","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Precise mapping of coastal wetlands using time-series remote sensing images and deep learning model\",\"authors\":\"Lina Ke, Yao Lu, Qin Tan, Yu Zhao, Quanming Wang\",\"doi\":\"10.3389/ffgc.2024.1409985\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mapping coastal wetlands' spatial distribution and spatiotemporal dynamics is crucial for ecological conservation and restoration efforts. However, the high hydrological dynamics and steep environmental gradients pose challenges for precise mapping. This study developed a new method for mapping coastal wetlands using time-series remote sensing images and a deep learning model. Precise mapping and change analysis were conducted in the Liaohe Estuary Reserve in 2017 and 2022. The results demonstrated the superiority of Temporal Optimize Features (TOFs) in feature importance and classification accuracy. Incorporating TOFs into the ResNet model effectively combined temporal and spatial information, enhancing coastal wetland mapping accuracy. Comparative analysis revealed ecological restoration trends, emphasizing artificial restoration's predominant role in salt marsh vegetation rehabilitation. These findings provide essential technical support for coastal wetland ecosystem monitoring and contribute to the study of sustainability under global climate change.\",\"PeriodicalId\":507254,\"journal\":{\"name\":\"Frontiers in Forests and Global Change\",\"volume\":\" 854\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Forests and Global Change\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/ffgc.2024.1409985\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Forests and Global Change","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/ffgc.2024.1409985","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Precise mapping of coastal wetlands using time-series remote sensing images and deep learning model
Mapping coastal wetlands' spatial distribution and spatiotemporal dynamics is crucial for ecological conservation and restoration efforts. However, the high hydrological dynamics and steep environmental gradients pose challenges for precise mapping. This study developed a new method for mapping coastal wetlands using time-series remote sensing images and a deep learning model. Precise mapping and change analysis were conducted in the Liaohe Estuary Reserve in 2017 and 2022. The results demonstrated the superiority of Temporal Optimize Features (TOFs) in feature importance and classification accuracy. Incorporating TOFs into the ResNet model effectively combined temporal and spatial information, enhancing coastal wetland mapping accuracy. Comparative analysis revealed ecological restoration trends, emphasizing artificial restoration's predominant role in salt marsh vegetation rehabilitation. These findings provide essential technical support for coastal wetland ecosystem monitoring and contribute to the study of sustainability under global climate change.